期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SVM-based Ontology Matching Approach 被引量:3
1
作者 Liu, Lei Yang, Feng +2 位作者 Zhang, Peng Wu, Jing-Yi Hu, Liang 《International Journal of Automation and computing》 EI 2012年第3期306-314,共9页
There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which a... There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which are used in current multi-strategy ontology mapping. The semantic information is not included in them and a lot of manual intervention is also needed, so it leads to that some factual mapping relations are missed. Addressing this issue, the work presented in this paper puts forward an ontology matching approach, which uses multi-strategy mapping technique to carry on similarity iterative computation and explores both linguistic and structural similarity. Our approach takes different similarities into one whole, as a similarity cube. By cutting operation, similarity vectors are obtained, which form the similarity space, and by this way, mapping discovery can be converted into binary classification. Support vector machine (SVM) has good generalization ability and can obtain best compromise between complexity of model and learning capability when solving small samples and the nonlinear problem. Because of the said reason, we employ SVM in our approach. For making full use of the information of ontology, our implementation and experimental results used a common dataset to demonstrate the effectiveness of the mapping approach. It ensures the recall ration while improving the quality of mapping results. 展开更多
关键词 Semantic web ontology engineering ontology mapping similarity cube support vector machine (SVM).
原文传递
基于知识关联的多层本体立方体设计与实现——以金融证券领域为例 被引量:1
2
作者 刘政昊 《现代情报》 CSSCI 2022年第1期72-86,共15页
[目的/意义]结合金融证券行业特征,借鉴层次式设计思路和数据立方体概念,提出多层领域本体立方体模型并完成构建。[方法/过程]复用FBIO本体进行知识建模;利用LDA主题建模与BIRCH层次聚类完成概念提取;基于依存句法和深度学习框架的知识... [目的/意义]结合金融证券行业特征,借鉴层次式设计思路和数据立方体概念,提出多层领域本体立方体模型并完成构建。[方法/过程]复用FBIO本体进行知识建模;利用LDA主题建模与BIRCH层次聚类完成概念提取;基于依存句法和深度学习框架的知识抽取完成本体实例扩充;通过维度分类和基于概率的实体空间向量表示增强语义关联性。[结果/结论]多层构建方式和立方体结构增加了知识内在关联,为金融概念知识提供多层次、细粒度的知识组织方式;也为本体构建提供新的思路。 展开更多
关键词 多层领域本体 本体立方体 金融证券 知识关联 层次聚类 知识抽取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部