In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong co...In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.展开更多
基金supported by National Scientific Foundation of China with Grant No. 41774067
文摘In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.