期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于一维空洞卷积神经网络的故障电弧检测方法
1
作者
蒋慧灵
白嘎力
+5 位作者
周郑
邓青
滕杰
张越
周亮
周正青
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第3期492-501,共10页
串联故障电弧因多样性、相似性和隐蔽性而难以被检测,容易引发故障电弧保护装置误报和漏报。采用一维空洞卷积神经网络(one-dimensional dilated convolutional neural network,1D-DCNN)提取以高采样率采集的故障电弧电流特征,引入扩展...
串联故障电弧因多样性、相似性和隐蔽性而难以被检测,容易引发故障电弧保护装置误报和漏报。采用一维空洞卷积神经网络(one-dimensional dilated convolutional neural network,1D-DCNN)提取以高采样率采集的故障电弧电流特征,引入扩展型指数线性单元(scaled exponential linear unit, SeLU)激活函数和残差连接解决梯度消失和网络退化问题,并结合平均集成学习和Softmax多分类器建立故障电弧检测模型。实验结果表明:所提方法对单负载和混合负载故障电弧的检测准确率达99.67%,相应负载识别准确率达99.95%,总体预测结果准确率达99.62%,优于传统卷积神经网络(convolutional neural network, CNN),满足故障电弧检测要求,有助于串联故障电弧检测和负载识别。
展开更多
关键词
一维空洞卷积
串联故障电弧
支路故障电弧
故障电弧检测
负载分类
原文传递
基于深度学习的水平非均匀蒸发波导反演方法研究
2
作者
吴佳静
张金鹏
+1 位作者
张玉石
魏志强
《电波科学学报》
CSCD
北大核心
2023年第4期665-672,共8页
水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度...
水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度和误差.为解决上述问题,首先提出了一维残差扩张因果卷积自编码器(one-dimensional residual dilated causal convolutional autoencoder,1D-RDCAE)网络实现低自由度的非均匀蒸发波导剖面建模,其次提出了多尺度卷积残差网络(multi-scale convolutional attention residual network,MSCA-ResNet)框架来实现水平非均匀蒸发波导剖面反演.为验证建模模型的有效性,在模拟海杂波功率数据集上验证降维模型的有效性,实验结果表明,基于1D-RDCAE比基于主分量分析法、堆栈自动编码器和一维卷积自动编码器降维重构后更接近原始数据,并且在模型训练过程中收敛速度更快.为了验证反演模型的有效性,在模拟的海杂波和实测海杂波数据上进行了测试,结果表明基于仿真海杂波和实测海杂波数据分别可实现蒸发波导高度反演准确率为96.98%和91.25%,优于目前典型的反演方法.本文提出的基于深度学习的水平非均匀蒸发波导反演方法具有模型反演效率高、模型复杂度低、反演误差小的特点,为海上反常传播环境实时高精度认知提供了新技术.
展开更多
关键词
海杂波
蒸发波导
水平非均匀
深度学习
反演
主分量分析(PCA)法
一维残差扩张因果卷积自编码器
多尺度卷积残差网络
下载PDF
职称材料
题名
基于一维空洞卷积神经网络的故障电弧检测方法
1
作者
蒋慧灵
白嘎力
周郑
邓青
滕杰
张越
周亮
周正青
机构
北京科技大学金属冶炼重大事故防控技术支撑基地
北京科技大学大安全科学研究院
北京科技大学土木与资源工程学院
呼和浩特市烟草公司
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第3期492-501,共10页
基金
国家重点研发计划项目(2021YFC1523504)
国家应急管理部科技计划项目(2021XFCX25)
+2 种基金
国家自然科学基金青年科学基金项目(72004113)
应急管理部消防救援局重点研发项目(2022XFZD05)
河北省重点研发项目(22375419D)。
文摘
串联故障电弧因多样性、相似性和隐蔽性而难以被检测,容易引发故障电弧保护装置误报和漏报。采用一维空洞卷积神经网络(one-dimensional dilated convolutional neural network,1D-DCNN)提取以高采样率采集的故障电弧电流特征,引入扩展型指数线性单元(scaled exponential linear unit, SeLU)激活函数和残差连接解决梯度消失和网络退化问题,并结合平均集成学习和Softmax多分类器建立故障电弧检测模型。实验结果表明:所提方法对单负载和混合负载故障电弧的检测准确率达99.67%,相应负载识别准确率达99.95%,总体预测结果准确率达99.62%,优于传统卷积神经网络(convolutional neural network, CNN),满足故障电弧检测要求,有助于串联故障电弧检测和负载识别。
关键词
一维空洞卷积
串联故障电弧
支路故障电弧
故障电弧检测
负载分类
Keywords
one
-
dimensional
dilated
convolutional
series
arc
fault
branch
arc
fault
arc
fault
detection
workload
classification
分类号
X934 [环境科学与工程—安全科学]
原文传递
题名
基于深度学习的水平非均匀蒸发波导反演方法研究
2
作者
吴佳静
张金鹏
张玉石
魏志强
机构
中国电波传播研究所电波环境特性及模化技术重点实验室
中国海洋大学
出处
《电波科学学报》
CSCD
北大核心
2023年第4期665-672,共8页
基金
国家自然科学基金(U2006207)。
文摘
水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度和误差.为解决上述问题,首先提出了一维残差扩张因果卷积自编码器(one-dimensional residual dilated causal convolutional autoencoder,1D-RDCAE)网络实现低自由度的非均匀蒸发波导剖面建模,其次提出了多尺度卷积残差网络(multi-scale convolutional attention residual network,MSCA-ResNet)框架来实现水平非均匀蒸发波导剖面反演.为验证建模模型的有效性,在模拟海杂波功率数据集上验证降维模型的有效性,实验结果表明,基于1D-RDCAE比基于主分量分析法、堆栈自动编码器和一维卷积自动编码器降维重构后更接近原始数据,并且在模型训练过程中收敛速度更快.为了验证反演模型的有效性,在模拟的海杂波和实测海杂波数据上进行了测试,结果表明基于仿真海杂波和实测海杂波数据分别可实现蒸发波导高度反演准确率为96.98%和91.25%,优于目前典型的反演方法.本文提出的基于深度学习的水平非均匀蒸发波导反演方法具有模型反演效率高、模型复杂度低、反演误差小的特点,为海上反常传播环境实时高精度认知提供了新技术.
关键词
海杂波
蒸发波导
水平非均匀
深度学习
反演
主分量分析(PCA)法
一维残差扩张因果卷积自编码器
多尺度卷积残差网络
Keywords
sea
clutter
evaporation
duct
range
direction
inhomogeneous
deep
learning
inversion
principal
comp
one
nt
analysis(PCA)
one
-
dimensional
residual
dilated
causal
convolutional
autoencoder
multi-scale
convolutional
residual
network
分类号
TN011 [电子电信—物理电子学]
P732 [天文地球—海洋科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于一维空洞卷积神经网络的故障电弧检测方法
蒋慧灵
白嘎力
周郑
邓青
滕杰
张越
周亮
周正青
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024
0
原文传递
2
基于深度学习的水平非均匀蒸发波导反演方法研究
吴佳静
张金鹏
张玉石
魏志强
《电波科学学报》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部