期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
一维多尺度卷积神经网络及其在滚动轴承故障诊断中的应用 被引量:15
1
作者 张成帆 江泽鹏 +2 位作者 曹伟 陈伟 张敏 《机械科学与技术》 CSCD 北大核心 2022年第1期120-126,共7页
为了有效利用来自实际生产中监测系统的海量数据,并结合一维卷积网络在处理一维数据的优势,提出一种端到端的一维多尺度卷积神经网络滚动轴承故障诊断方法。首先使用两个一维卷积层和池化层将输入振动信号的长度缩减并增加通道数,然后... 为了有效利用来自实际生产中监测系统的海量数据,并结合一维卷积网络在处理一维数据的优势,提出一种端到端的一维多尺度卷积神经网络滚动轴承故障诊断方法。首先使用两个一维卷积层和池化层将输入振动信号的长度缩减并增加通道数,然后利用多尺度并行一维卷积核对上层输出特征进行不同尺度上的反复提取和重构,最后将提取到的特征输入到一个全连接层进行故障分类。为验证算法的有效性,通过对滚动轴承不同工况、不同训练样本以及与支持向量机、BP神经网络和循环神经网络等算法对比分析。结果表明提出的模型及方法具有较好的识别效果,滚动轴承故障诊断正确率达到99.78%。 展开更多
关键词 滚动轴承 故障诊断 一维卷积网络 深度学习
下载PDF
基于一维卷积的生产线冷态重轨表面缺陷快速检测 被引量:1
2
作者 张德富 宋克臣 +1 位作者 牛孟辉 颜云辉 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期276-281,共6页
采用直观、高效的基于机器视觉的检测方式对生产线冷态重轨表面缺陷进行自动化检测.以彩色双目线阵相机作为采集传感器获取深度信息和RGB信息.深度信息用于缺陷快速检测,RGB信息及深度信息用于缺陷分割.然后,提出一个基于一维卷积网络... 采用直观、高效的基于机器视觉的检测方式对生产线冷态重轨表面缺陷进行自动化检测.以彩色双目线阵相机作为采集传感器获取深度信息和RGB信息.深度信息用于缺陷快速检测,RGB信息及深度信息用于缺陷分割.然后,提出一个基于一维卷积网络的深度网络用于缺陷快速检测.该网络主要包括基于一维卷积网络的特征提取器,由全连接层和Dropout层组成的分类器,以及加入尺寸先验的滤波器.为了验证所提出的网络性能,本文搭建了数据采集平台并对重轨样件进行了数据采集.实验结果表明,本文的快速检测网络在采集的数据上缺陷级检测率为100%,误检率为35%,优于对比网络. 展开更多
关键词 生产线冷态重轨 表面缺陷 机器视觉 深度信息 一维卷积网络
下载PDF
基于改进一维卷积神经网络的汽轮发电机组轴系扭振模态参数辨识 被引量:17
3
作者 何成兵 王润泽 张霄翔 《中国电机工程学报》 EI CSCD 北大核心 2020年第S01期195-203,共9页
提出一种改进一维卷积神经网络(improved onedimensional convolution neural network,ICNN-1D),用于辨识汽轮发电机组轴系扭振模态参数。论文设计一种包含输入层、三组一维卷积层和池化层、全连接层与输出层的一维卷积神经网络;为了克... 提出一种改进一维卷积神经网络(improved onedimensional convolution neural network,ICNN-1D),用于辨识汽轮发电机组轴系扭振模态参数。论文设计一种包含输入层、三组一维卷积层和池化层、全连接层与输出层的一维卷积神经网络;为了克服该网络模态参数定阶难的缺点,对其进行了无监督学习网络结构改造;并在Adam优化算法基础上,提出了动态衰减学习率优化策略,以避免网络学习过程出现震荡。以某600MW汽轮发电机组为研究对象,通过发电机5°角解并列、汽轮机甩60%负荷和甩100%负荷3种试验方案激发出机组轴系扭振,应用ICNN-1D进行轴系扭振模态参数辨识,结果表明ICNN-1D可准确辨识出机组在3种试验工况下轴系扭振固有频率和模态阻尼系数,证明了该方法的有效性。 展开更多
关键词 一维卷积神经网络 无监督学习 汽轮发电机组 扭振 模态参数辨识
下载PDF
基于一维卷积神经网络的网络流量分类方法 被引量:14
4
作者 李道全 王雪 +1 位作者 于波 黄泰铭 《计算机工程与应用》 CSCD 北大核心 2020年第3期94-99,共6页
针对传统机器学习算法对于流量分类的瓶颈问题,提出基于一维卷积神经网络模型的应用程序流量分类算法。将网络流量数据集进行数据预处理,去除无关数据字段,并使数据满足卷积神经网络的输入特性。设计了一种新的一维卷积神经网络模型,从... 针对传统机器学习算法对于流量分类的瓶颈问题,提出基于一维卷积神经网络模型的应用程序流量分类算法。将网络流量数据集进行数据预处理,去除无关数据字段,并使数据满足卷积神经网络的输入特性。设计了一种新的一维卷积神经网络模型,从网络结构、超参数空间以及参数优化方面入手构造了最优分类模型。该模型通过卷积层自主学习数据特征,解决了传统基于机器学习的流量分类算法中特征选择问题。通过网络公开数据集进行模型测试,相比于传统的一维卷积神经网络模型,所设计的神经网络模型的分类准确率提升了16.4%,总分类时间节省了71.48%。另外在类精度、召回率以及F1分数方面都有较好的提升。 展开更多
关键词 一维卷积神经网络 流量分类 数据预处理 参数优化 深度学习
下载PDF
基于1D-CNN联合特征提取的轴承健康监测与故障诊断 被引量:14
5
作者 刘立 朱健成 +1 位作者 韩光洁 毕远国 《软件学报》 EI CSCD 北大核心 2021年第8期2379-2390,共12页
针对特定机械设备构建数据驱动的故障诊断模型缺乏泛化能力,而轴承作为各型机械的共有核心部件,对其健康状态的判定对不同机械的衍生故障分析具有普适性意义.提出了一种基于1D-CNN(one-dimensional convolution neural network)联合特... 针对特定机械设备构建数据驱动的故障诊断模型缺乏泛化能力,而轴承作为各型机械的共有核心部件,对其健康状态的判定对不同机械的衍生故障分析具有普适性意义.提出了一种基于1D-CNN(one-dimensional convolution neural network)联合特征提取的轴承健康监测与故障诊断算法.算法首先对轴承原始振动信号进行分区裁剪,裁剪获得的信号分区作为特征学习空间并行输入1D-CNN中,以提取各工况下的代表性特征域.为了避免对故障重叠信息的处理,优先使用对健康状态敏感的特征域构建轴承健康状态判别模型,若健康状态判别模型识别轴承未处于健康状态,特征域将与原始信号联合重构,通过耦合自动编码器开展故障模式判定.使用凯斯西储大学(Case Western Reserve University)的轴承数据开展实验,结果表明,该算法继承了深层学习模型的准确性和鲁棒性,具有较高的故障诊断精度和较低的诊断时延. 展开更多
关键词 工业物联网 故障诊断 轴承 一维卷积神经网络 联合特征
下载PDF
基于一维卷积神经网络的滚动轴承故障程度诊断 被引量:14
6
作者 薛妍 沈宁 窦东阳 《轴承》 北大核心 2021年第4期48-54,共7页
针对滚动轴承性能退化状态的识别问题,提出了基于一维卷积神经网络的故障诊断方法。以轴承原始振动信号为输入,利用一维卷积神经网络自适应学习特征和分类的能力,实现由数据到识别结果的“端到端”诊断,避免了人为因素的干扰。通过凯斯... 针对滚动轴承性能退化状态的识别问题,提出了基于一维卷积神经网络的故障诊断方法。以轴承原始振动信号为输入,利用一维卷积神经网络自适应学习特征和分类的能力,实现由数据到识别结果的“端到端”诊断,避免了人为因素的干扰。通过凯斯西储大学不同故障尺寸的滚动轴承故障数据(模拟不同故障程度)加以验证,所建立python-Keras深度学习模型的诊断正确率达到98.2%。用辛辛那提大学滚动轴承全寿命周期数据对退化全过程进行诊断,根据轴承原始信号时域指标变化将全周期分为正常、轻微退化、中度退化、严重退化和失效5种程度,通过一维卷积神经网络对轴承原始数据进行有监督学习,所建立python-Keras深度学习模型的故障诊断平均准确率为93%。 展开更多
关键词 滚动轴承 故障诊断 一维卷积神经网络 状态监测 寿命周期
下载PDF
一维卷积神经网络特征提取下微震能级时序预测 被引量:11
7
作者 裴艳宇 杨小彬 +3 位作者 传金平 吴学松 程虹铭 吕祥锋 《工程科学学报》 EI CSCD 北大核心 2021年第7期1003-1009,共7页
微震能级随时间发生变化,高能级微震事件与冲击地压有良好的对应关系,为预测矿山微震能量时序变化,基于一维卷积神经网络(Convolutional neural networks,CNN),建立微震能级时间序列预测模型;通过模型训练,实现以前十次微震事件的能量... 微震能级随时间发生变化,高能级微震事件与冲击地压有良好的对应关系,为预测矿山微震能量时序变化,基于一维卷积神经网络(Convolutional neural networks,CNN),建立微震能级时间序列预测模型;通过模型训练,实现以前十次微震事件的能量级别作为输入来预测下一次微震事件的能量级别.由于微震样本数据类间不平衡问题,导致模型测试时将106能量级别的微震事件全部判断为105能量级别的微震事件,为进一步提高模型对106能级微震事件预测的准确率,对模型进行改进并使用混合采样方法训练改进后的模型;利用砚北煤矿250202工作面微震能级实测部分数据,改进后模型的总体测试正确率达到98.4%,其中106能量级别的微震事件测试正确率提升到99%.将模型应用于砚北煤矿250202工作面进行微震能级时序预测,模型的预测正确率整体达到93.5%,且对高能级微震事件的预测正确率接近100%. 展开更多
关键词 微震能级时序预测 一维卷积神经网络 类间不平衡 混合采样 冲击地压
下载PDF
基于一维卷积神经网络的实时道岔故障诊断 被引量:8
8
作者 池毅 陈光武 《计算机工程与应用》 CSCD 北大核心 2022年第20期293-299,共7页
针对道岔故障诊断系统实时性要求高、特征提取严重依赖于先验知识的问题,提出了一种基于一维卷积神经网络(1D-CNN)的道岔实时故障诊断方法。以S700k转辙机的功率曲线为例,建立一维卷积神经网络的结构模型,该模型将特征提取与故障分类融... 针对道岔故障诊断系统实时性要求高、特征提取严重依赖于先验知识的问题,提出了一种基于一维卷积神经网络(1D-CNN)的道岔实时故障诊断方法。以S700k转辙机的功率曲线为例,建立一维卷积神经网络的结构模型,该模型将特征提取与故障分类融合为一体,优化了网络参数,同时使用正则化Dropout提高模型的泛化能力,采用t-SNE可视化方法,来反映模型提取特征的有效性。仿真实验表明:卷积层和池化层对原始时域信号的自适应特征提取,能较好地捕捉信号空间维度信息,降低模型的计算量,提高模型的抗噪性能,实现了端到端的实时故障诊断,并有效地提高道岔故障实时诊断的准确率。 展开更多
关键词 一维卷积神经网络 S700k转辙机 时间序列 故障诊断
下载PDF
基于一维卷积神经网络的雌激素粉末拉曼光谱定性分类 被引量:9
9
作者 赵勇 荣康 谈爱玲 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第12期3755-3760,共6页
拉曼光谱物质定性鉴别已被广泛应用于诸多行业和研究领域,但传统拉曼光谱分析过程中的预处理主要依赖人为经验,光谱特征提取虽然能够降低信号维度,同时也会造成部分光谱信息损失。特性相近物质本身光谱相似度较高,受到测量过程中环境干... 拉曼光谱物质定性鉴别已被广泛应用于诸多行业和研究领域,但传统拉曼光谱分析过程中的预处理主要依赖人为经验,光谱特征提取虽然能够降低信号维度,同时也会造成部分光谱信息损失。特性相近物质本身光谱相似度较高,受到测量过程中环境干扰和分析过程中多种误差影响,导致最终分类效果并不理想。针对此问题,提出基于一维卷积神经网络(one-dimensional convolution neural network,1D-CNN)的拉曼光谱定性分类方法。实验采集雌酮(Estrone)、雌二醇(Estradiol),雌三醇(Estriol)三种不同雌性激素粉末的拉曼光谱,设计随机平移、添加噪声和随机加权三种光谱数据增强方法,构建数量充足的拉曼光谱数据库用于神经网络模型训练与测试;基于拉曼光谱数据特点提出一维卷积神经网络分类模型,将光谱预处理、特征提取和定性分类的全过程融为一体。通过大量仿真实验,优化所提出的神经网络模型超参数和训练过程并测试分类效果,从预处理对光谱分类结果的影响和模型抗干扰性能两个方面与多种传统拉曼光谱分类算法对比,评价模型性能。实验结果表明,本文提出的一维卷积神经网络模型可实现三类雌性激素粉末拉曼光谱快速准确分类,分类正确率最高可达98.26%,分析过程中无需光谱预处理和特征提取步骤,简化了光谱分析流程,并能保留更多有效信息。同时,当模拟测量噪声强度达到60 dBW时,传统方法分类正确率均明显出现不同程度明显降低,卷积神经网络模型依然能够取得96.81%的分类正确率,说明相比对传统拉曼光谱分类方法,所提出方法受光谱测量噪声影响更小,鲁棒性更强,适用于分析更复杂现场测量的强噪声拉曼光谱信号。该研究结果表明深度学习方法在拉曼光谱的分析与处理领域具有很大的应用潜力和研究价值。 展开更多
关键词 拉曼光谱 深度学习 一维卷积神经网络 雌性激素 定性分类
下载PDF
滚动轴承故障诊断的TD-DCCNN方法研究 被引量:4
10
作者 王体春 解缙 +1 位作者 咸玉贝 胡玉峰 《重庆理工大学学报(自然科学)》 北大核心 2023年第7期135-143,共9页
轴承的健康状态对于雷达驱动结构以及直升机传动机构等旋转机械的正常运作至关重要,针对滚动轴承工况复杂,存在噪声,振动信号各故障标签样本不足且不平衡的特点,基于扰动训练样本的可变形卷积和深度残差块结构,提出了一种改进一维卷积... 轴承的健康状态对于雷达驱动结构以及直升机传动机构等旋转机械的正常运作至关重要,针对滚动轴承工况复杂,存在噪声,振动信号各故障标签样本不足且不平衡的特点,基于扰动训练样本的可变形卷积和深度残差块结构,提出了一种改进一维卷积神经网络的滚动轴承故障诊断方法。通过设置可变形卷积提高对故障局部特征提取的能力,引入改进的深度残差块来提高模型的泛化能力和对训练数据的敏感性,在加入训练数据时,通过设置训练扰动层加入扰动样本,提升模型的鲁棒性。以凯斯西储大学轴承数据集为实验数据集,分割训练集和测试集,实验结果证明了所提方法的有效性,TD-DCCNN算法在信噪比为0的情况下仍可以达到90.35%的平均准确率,与其他诊断算法相比有一定的优越性。 展开更多
关键词 故障诊断 滚动轴承 一维卷积神经网络 可变形卷积 扰动训练
下载PDF
基于CNN⁃SIndRNN的恶意TLS流量快速识别方法 被引量:7
11
作者 李小剑 谢晓尧 +1 位作者 徐洋 张思聪 《计算机工程》 CAS CSCD 北大核心 2022年第4期148-157,164,共11页
传统浅层机器学习方法在识别恶意TLS流量时依赖专家经验且流量表征不足,而现有的深度神经网络检测模型因层次结构复杂导致训练时间过长。提出一种基于CNN-SIndRNN端到端的轻量级恶意加密流量识别方法,使用多层一维卷积神经网络提取流量... 传统浅层机器学习方法在识别恶意TLS流量时依赖专家经验且流量表征不足,而现有的深度神经网络检测模型因层次结构复杂导致训练时间过长。提出一种基于CNN-SIndRNN端到端的轻量级恶意加密流量识别方法,使用多层一维卷积神经网络提取流量字节序列局部模式特征,并利用全局最大池化降维以减少计算参数。为增强流量表征,设计一种改进的循环神经网络用于捕获流量字节长距离依赖关系。在此基础上,采用独立循环神经网络IndRNN单元代替传统RNN循环单元,使用切片并行计算结构代替传统RNN的串行计算结构,并将两种类型深度神经网络所提取的特征拼接作为恶意TLS流量表征。在CTU-Maluware-Capure公开数据集上的实验结果表明,该方法在二分类实验上F1值高达0.9657,在多分类实验上整体准确率为0.8489,相比BotCatcher模型训练时间与检测时间分别节省了98.47%和98.28%。 展开更多
关键词 恶意TLS流量 独立循环神经网络 切片循环神经网络 一维卷积 全局池化
下载PDF
基于近红外光谱融合与深度学习的玉米成分定量建模方法 被引量:8
12
作者 谈爱玲 王晓斯 +1 位作者 楚振原 赵勇 《食品与发酵工业》 CAS CSCD 北大核心 2020年第23期213-219,共7页
为探索光谱融合结合深度学习对玉米成分定量检测的可行性,针对80个玉米样本的原始、一阶导数、二阶导数光谱和前3类的串行融合光谱分别构建一维卷积神经网络(one-dimensional convolution neural network,1D-CNN)模型,对样本中水分、油... 为探索光谱融合结合深度学习对玉米成分定量检测的可行性,针对80个玉米样本的原始、一阶导数、二阶导数光谱和前3类的串行融合光谱分别构建一维卷积神经网络(one-dimensional convolution neural network,1D-CNN)模型,对样本中水分、油脂、蛋白质和淀粉4种成分含量进行定量建模。结果表明,基于串行融合光谱的1D-CNN的4种成分模型性能指标均优于单独基于一种光谱的模型。与传统偏最小二乘回归和支持向量机回归对比,所建立的定量模型性能均为最优。针对测试集,4种成分模型的决定系数和均方根误差分别为0.956和0.211、0.972和0.118、0.982和0.239、0.949和0.428。实验结果表明,串行光谱融合结合卷积神经网络的方法能够充分挖掘光谱所蕴含的信息,增强模型预测能力,为近红外光谱定量分析提供新思路。 展开更多
关键词 近红外光谱 玉米成分 深度学习 一维卷积神经网络 光谱融合
下载PDF
基于1D-CNN-PSO-SVM的电力变压器故障诊断
13
作者 陈志勇 杜江 《计算机仿真》 2024年第3期71-75,87,共6页
针对变压器故障诊断过程中人工提取特征泛化性差,诊断正确率低的问题,提出了一种基于一维卷积神经网络(1D-CNN)和粒子群优化支持向量机(PSO-SVM)的故障诊断模型。首先构建一个1D-CNN作为特征提取器,以变压器油中溶解气体原始数据作为输... 针对变压器故障诊断过程中人工提取特征泛化性差,诊断正确率低的问题,提出了一种基于一维卷积神经网络(1D-CNN)和粒子群优化支持向量机(PSO-SVM)的故障诊断模型。首先构建一个1D-CNN作为特征提取器,以变压器油中溶解气体原始数据作为输入进行训练,逐层自适应的学习与故障类型相关性更高的深层抽象特征。训练完成后,用分类性能更优的PSO-SVM代替传统1D-CNN中的Softmax分类器实现变压器故障类型的识别。仿真结果表明,经1D-CNN提取特征后,不同故障类型的样本间具有很高的区分度;利用PSO-SVM对提取得到的特征进行分类识别,相比于采用Softmax分类器时,诊断准确率得到了进一步提高,验证了所提方法的有效性。 展开更多
关键词 变压器 故障诊断 一维卷积神经网络 支持向量机 粒子群优化算法
下载PDF
卷积神经网络的紫外-可见光谱水质分类方法 被引量:2
14
作者 陈庆 汤斌 +6 位作者 龙邹荣 缪俊锋 黄子恒 戴若辰 石胜辉 赵明富 钟年丙 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第3期731-736,共6页
水质污染源的及时精确定位和精细化的污染防治措施是打赢水污染防治攻坚战的迫切需求,为解决地表水实际水样高锰酸盐指数准确分类的实际问题,以光谱降噪和光谱有效信息提取为切入点,根据紫外-可见光谱数据的特点,提出使用一维卷积神经... 水质污染源的及时精确定位和精细化的污染防治措施是打赢水污染防治攻坚战的迫切需求,为解决地表水实际水样高锰酸盐指数准确分类的实际问题,以光谱降噪和光谱有效信息提取为切入点,根据紫外-可见光谱数据的特点,提出使用一维卷积神经网络处理紫外-可见光谱数据。为验证检测一维卷积神经网络对地表水光谱信号分类的可行性,选取长江的某段流域作为取样点。采集当天的长江上游水、某河水、嘉陵江水,生活污水、500 mg·L^(-1)邻苯二甲酸氢钾溶液来模拟污染水源。将几种水样按不同的配比来模拟当天该流域的水污染变化情况。采集现有的单一水样及混合配比水样的光谱数据,根据各类水样的特征光谱信息进行区分,实现地表水高锰酸盐指数的预测分类,快速确定异常水样的污染来源,通过仿真实验,优化模型参数并完成优化训练。与K最邻近法、支持向量机等传统分类方法相比,该算法在光谱预处理复杂度和定性分析准确度方面有较大优势,在没有复杂的数据预处理前提下,将获取的350条光谱数据建立水质分类模型,随机选择其中245条数据作为训练集,另105条数据作为测试集,模型的混淆矩阵分类精度达99.0%。不仅简化了整个光谱分析流程,而且能保留更多的有效光谱信息,减小人为预处理对紫外-可见光谱数据的影响,实现地表水高锰酸盐指数的准确分类。实验结果表明该方法可对不同水体水样进行准确分类,快速定位污染源,为无法激发荧光的污染物溯源提供了科学依据,为与三维荧光技术辅助配合快速精确定位地表水污染源提供了可能,同时表明了深度学习在紫外-可见光谱法测量实际水样领域有着巨大的应用潜力和研究价值。 展开更多
关键词 水质 紫外-可见光谱 一维卷积神经网络 分类
下载PDF
基于一维卷积神经网络的患者特异性心拍分类方法研究 被引量:6
15
作者 黄佼 宾光宇 吴水才 《中国医疗设备》 2018年第3期11-14,共4页
目的提出一种基于一维卷积神经网络的患者特异性心电分类方法,提升心拍自动分类性能,特别是室上性早搏(Superventricular Premature Beat,SVEB)分类性能,为临床心电诊断提供辅助依据。方法将多层一维卷积神经网络自动学习的心电特征和... 目的提出一种基于一维卷积神经网络的患者特异性心电分类方法,提升心拍自动分类性能,特别是室上性早搏(Superventricular Premature Beat,SVEB)分类性能,为临床心电诊断提供辅助依据。方法将多层一维卷积神经网络自动学习的心电特征和心电的RR间期特征进行融合,送入多层感知器,再通过softmax分类器进行分类;选择少量公共心拍数据加上患者特定的心拍数据用于训练分类模型,实现患者特异性心拍识别。结果采用麻省理工学院提供的标准心律失常数据库(MIT-BIH Arrhythmia Database)评估算法的分类性能,与已有研究结果相比,分类性能得到提升,其中SVEB识别的灵敏度达到88.7%。结论该方法可为医护人员诊断心脏疾病提供可靠的辅助依据。 展开更多
关键词 心电分类 一维卷积神经网络 特征融合 患者特异性
下载PDF
基于改进OS-ELM的电子鼻在线气体浓度检测 被引量:1
16
作者 朱梓涵 陶洋 梁志芳 《电子技术应用》 2023年第10期71-75,共5页
电子鼻是一种仿生传感系统,该设备能够同时对多种气体进行识别,因此应用在许多领域当中。气体浓度算法是电子鼻对气体定量分析时的核心部分,为了提高电子鼻浓度检测算法精度,提出一种基于在线序列极限学习机(Online Sequential-Extreme ... 电子鼻是一种仿生传感系统,该设备能够同时对多种气体进行识别,因此应用在许多领域当中。气体浓度算法是电子鼻对气体定量分析时的核心部分,为了提高电子鼻浓度检测算法精度,提出一种基于在线序列极限学习机(Online Sequential-Extreme Learning Machine,OS-ELM)的预测模型。该模型通过一维卷积神经网络(One Dimen‐sional Convolutional Neural Network,1DCNN)提取特征,使用OS-ELM对气体浓度进行预测,并提出了一种改进的粒子群(Particle Swarm Optimization,PSO)算法以克服OS-ELM需人工调整模型参数的问题。由理论分析,改进的算法比传统PSO算法有更强的搜索能力。实验结果表明,所提模型对气体的预测精度上较传统的预测模型具有更高的预测精度和泛化能力。 展开更多
关键词 电子鼻 浓度检测 一维卷积神经网络 在线序列极限学习机 粒子群算法
下载PDF
多形态卷积并行神经网络建立效能评估指标体系 被引量:4
17
作者 李辰 陈浩 李建勋 《电光与控制》 CSCD 北大核心 2021年第11期31-34,93,共5页
针对复杂装备建立效能评估指标体系的难题,引入了一维卷积神经网络模型,构建了多形态卷积核并行处理框架;从多个观测角度自适应学习装备原始运行数据,再对数据蕴含的特征加以整合,进而建立新的效能评估指标体系,避免了主观因素和计算难... 针对复杂装备建立效能评估指标体系的难题,引入了一维卷积神经网络模型,构建了多形态卷积核并行处理框架;从多个观测角度自适应学习装备原始运行数据,再对数据蕴含的特征加以整合,进而建立新的效能评估指标体系,避免了主观因素和计算难度的束缚,为研究效能评估智能化方法奠定了基础。 展开更多
关键词 一维卷积神经网络 多形态卷积核 指标体系 效能评估
下载PDF
基于卷积神经网络的第一镜表面杂质沉积状态识别研究
18
作者 徐苏 鄢容 +5 位作者 刘玉明 穆磊 盛鹏 郑薇 王晨雪 陈俊凌 《西北师范大学学报(自然科学版)》 CAS 北大核心 2023年第2期61-66,共6页
第一镜是托卡马克光学诊断系统最重要的光学元件之一,强烈的等离子体与壁相互作用导致第一镜表面出现的杂质沉积会严重影响第一镜反射率和相关光学诊断系统的准确性和有效性,因此准确判别第一镜表面杂质沉积状态对于实时获取并采取有效... 第一镜是托卡马克光学诊断系统最重要的光学元件之一,强烈的等离子体与壁相互作用导致第一镜表面出现的杂质沉积会严重影响第一镜反射率和相关光学诊断系统的准确性和有效性,因此准确判别第一镜表面杂质沉积状态对于实时获取并采取有效手段恢复第一镜反射率至关重要.文中采用非平衡磁控溅射等离子体方法制备纳米晶钼材料第一镜,在此基础上利用电子束蒸发镀膜方法在其表面沉积氧化铝非晶涂层,利用分光光度计测得有、无氧化铝沉积膜的钼第一镜全反射率,并通过数据增强方法对原始数据集进行数据扩充,结合卷积神经网络对杂质沉积第一镜的全反射率数据集进行识别、分类.结果表明,当卷积神经网络模型迭代次数为50时,模型分类准确性达到最佳状态,并在包含均值为0,方差为1高斯噪声的数据集中验证了一维卷积神经网络的抗噪能力.最终实现有、无氧化铝沉积膜的钼第一镜分类,正确率达到98.85%,这为在封闭托卡马克环境下的第一镜表面原位清洗与杂质沉积状态识别提供了一种可能的新方法. 展开更多
关键词 托卡马克 第一镜 反射率 识别 一维卷积神经网络
下载PDF
基于一维卷积神经网络和拉曼光谱的肺炎支原体菌株分类 被引量:3
19
作者 赵勇 何梦园 +2 位作者 王泊林 赵荣 孟宗 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1439-1444,共6页
肺炎支原体是造成人类呼吸系统疾病的主要原因。临床中,患者感染不同肺炎支原体症状极为相似,很难根据症状判别肺炎支原体类型并对症给药。因此,准确判别肺炎支原体菌株类型对于发病机理和疾病流行病学研究以及临床精准治疗具有重要意... 肺炎支原体是造成人类呼吸系统疾病的主要原因。临床中,患者感染不同肺炎支原体症状极为相似,很难根据症状判别肺炎支原体类型并对症给药。因此,准确判别肺炎支原体菌株类型对于发病机理和疾病流行病学研究以及临床精准治疗具有重要意义。拉曼光谱具有快速、高效、无污染等优点,在生物医学领域逐渐得到越来越多研究者们的关注。一维卷积神经网络(1D-CNN)是一类包含卷积运算且具有深度结构的前反馈网络,在语音信号和振动信号分析等方面取得成功应用。提出一维卷积神经网络与拉曼光谱技术结合,针对肺炎支原体主要基因型M129型和FH型样本的拉曼光谱数据集,实现肺炎支原体菌株分类。利用光谱数据增强方法扩充原光谱数据集作为模型输入,训练一维卷积神经网络模型,解决由于小样本导致卷积神经网络数据饥渴问题;为了得到最好的肺炎支原体分类效果并加速学习过程,优化模型结构并确定最佳模型参数;拉曼光谱测量时常混有高斯噪声、泊松噪声和乘性噪声,为优化模型抗噪能力,将原光谱分别叠加高斯噪声、泊松噪声和乘性噪声,训练一维卷积神经网络模型并和LDA,KNN和SVM等传统算法进行比较。实验结果表明基于1D-CNN方法,对于叠加高斯噪声的光谱数据所建模型分类正确率为98.0%,叠加泊松噪声的光谱数据分类正确率为97.0%,叠加乘性噪声的光谱数据分类正确率为97.0%,分类正确率远高于基于LDA,KNN和SVM等传统算法所建模型分类正确率;同时构造叠加5,15,25,35,45和55 dBW不同强度噪声的光谱数据集,当噪声达到55 dBW时,1D-CNN模型仍能取得92.5%的分类正确率。因此,一维卷积神经网络结合拉曼光谱技术应用于肺炎支原体菌株类型分类是可行的,具有抗噪声能力强和分类正确率高的优点,该研究为肺炎支原体肺炎快速诊断提供新思路。 展开更多
关键词 肺炎支原体 拉曼光谱 定性分类 一维卷积神经网络
下载PDF
基于深度学习的航空发动机磨损部位识别方法
20
作者 苗慧慧 曹桂松 +3 位作者 孙智君 康玉祥 马佳丽 陈果 《润滑与密封》 CAS CSCD 北大核心 2023年第4期136-144,共9页
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络... 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的特征提取以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实的某型航空发动机能谱数据基础上,对含氧数据和噪声数据分别进行测试,进一步说明该模型用于对磨损定位识别的有效性,具备实际应用的可行性。 展开更多
关键词 航空发动机 能谱分析 磨损 一维卷积残差网络 深度学习
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部