In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape i...In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.展开更多
The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid...The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid, elliptic cylinder, ribbon-like,penny-shaped, and rod-shaped inclusions embedded in 1 D hexagonal quasicrystal matrices are given. As an application of Eshelby tensors, the analytical expressions for the effective properties of the 1 D hexagonal quasicrystal composites are derived based on the Mori-Tanaka method. The effects of the volume fraction of the inclusion on the elastic properties of the composite materials are discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
基金Project supported by the National Natural Science Foundation of China (Nos. 11572289, 1171407,11702252, and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.
基金the National Natural Science Foundation of China(Nos.11962026,12002175,12162027,and 62161045)the Inner Mongolia Natural Science Foundation of China(No.2020MS01018)。
文摘The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid, elliptic cylinder, ribbon-like,penny-shaped, and rod-shaped inclusions embedded in 1 D hexagonal quasicrystal matrices are given. As an application of Eshelby tensors, the analytical expressions for the effective properties of the 1 D hexagonal quasicrystal composites are derived based on the Mori-Tanaka method. The effects of the volume fraction of the inclusion on the elastic properties of the composite materials are discussed.