Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which ...Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5'-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleo-tide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the conventional synthesis methods.展开更多
基金Acknowledgements This work was supported by the National 863 High-Tech Project, 973 National Key Fundamental Research Project and the National Natural Science Foundation of China (Grant No. 60071001).
文摘Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5'-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleo-tide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the conventional synthesis methods.