Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture(CEA)facilities that projected the image of plant factories for urban agricult...Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture(CEA)facilities that projected the image of plant factories for urban agriculture.The advances and improvements in CEA have promoted the scientific solutions for the efficient production of plants in populated cities and multi-story buildings.Successful deployment of CEA for urban agriculture requires many components and subsystems,as well as the understanding of the external influencing factors that should be systematically considered and integrated.This review is an attempt to highlight some of the most recent advances in greenhouse technology and CEA in order to raise the awareness for technology transfer and adaptation,which is necessary for a successful transition to urban agriculture.This study reviewed several aspects of a high-tech CEA system including improvements in the frame and covering materials,environment perception and data sharing,and advanced microclimate control and energy optimization models.This research highlighted urban agriculture and its derivatives,including vertical farming,rooftop greenhouses and plant factories which are the extensions of CEA and have emerged as a response to the growing population,environmental degradation,and urbanization that are threatening food security.Finally,several opportunities and challenges have been identified in implementing the integrated CEA and vertical farming for urban agriculture.展开更多
This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agr...This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT,such as unmanned aerial vehicles,wireless technologies,open-source IoT platforms,software defined networking(SDN),network function virtualization(NFV)technologies,cloud/fog computing,and middleware platforms.We also provide a classification of IoT applications for smart agriculture into seven categories:including smart monitoring,smart water management,agrochemicals applications,disease management,smart harvesting,supply chain management,and smart agricultural practices.Moreover,we provide a taxonomy and a side-by-side comparison of the state-ofthe-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.Furthermore,we present real projects that use most of the aforementioned technologies,which demonstrate their great performance in the field of smart agriculture.Finally,we highlight open research challenges and discuss possible future research directions for agricultural IoTs.展开更多
Background:The notion of smart city has grown popular over the past few years.It embraces several dimensions depending on the meaning of the word“smart”and benefits from innovative applications of new kinds of infor...Background:The notion of smart city has grown popular over the past few years.It embraces several dimensions depending on the meaning of the word“smart”and benefits from innovative applications of new kinds of information and communications technology to support communal sharing.Methods:By relying on prior literature,this paper proposes a conceptual framework with three dimensions:(1)human,(2)technology,and(3)organization,and explores a set of fundamental factors that make a city smart from a sharing economy perspective.Results:Using this triangle framework,we discuss what emerging blockchain technology may contribute to these factors and how its elements can help smart cities develop sharing services.Conclusions:This study discusses how blockchain-based sharing services can contribute to smart cities based on a conceptual framework.We hope it can stimulate interest in theory and practice to foster discussions in this area.展开更多
High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are l...High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are located in a disaster area.Non-orthogonal multiple access(NOMA)-based unmanned aerial vehicle(UAV)-aided network is emerging as a promising technique to overcome the above challenges.In this paper,an emergency communications framework of NOMA-based UAV-aided networks is established,where the disasters scenarios can be divided into three broad categories that have named emergency areas,wide areas and dense areas.First,a UAV-enabled uplink NOMA system is established to gather information from IoT devices in emergency areas.Then,a joint UAV deployment and resource allocation scheme for a multi-UAV enabled NOMA system is developed to extend the UAV coverage for IoT devices in wide areas.Furthermore,a UAV equipped with an antenna array has been considered to provide wireless service for multiple devices that are densely distributed in disaster areas.Simulation results are provided to validate the effectiveness of the above three schemes.Finally,potential research directions and challenges are also highlighted and discussed.展开更多
Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physi...Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk.Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications.As an extension of the cloud,the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications.Although there are some research efforts in this area,edge-based security designs for IoT applications are still in its infancy.This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs.We first present an edge-centric IoT architecture.Then,we extensively review the edge-based IoT security research efforts in the context of security architecture designs,firewalls,intrusion detection systems,authentication and authorization protocols,and privacy-preserving mechanisms.Finally,we propose our insight into future research directions and open research issues.展开更多
The blockchain represents emerging technologies and future trends.For the traditional social organization and mode of operation,the development of the blockchain is a revolution.As a decentralized infrastructure and d...The blockchain represents emerging technologies and future trends.For the traditional social organization and mode of operation,the development of the blockchain is a revolution.As a decentralized infrastructure and distributed general ledger agreement,the blockchain presents us with a great opportunity to establish data security and trust for automation and intelligence development in the Internet of Things(IoT)and it creates a new un-centralized programmable smart ecosystem.Our research synthesizes and analyses extant articles that focus on blockchain-related perspectives which will potentially play an important role in sustainable development in the world.Blockchain applications and future directions always attract more attention.Blockchain technology provides strong scalability and interoperability between the intelligent and the physical worlds.展开更多
The Internet of Things(IoT)is playing an important role in providing access to affordable,clean and green energy worldwide through the use of smart devices.The current electric power networks will be more reliable,sec...The Internet of Things(IoT)is playing an important role in providing access to affordable,clean and green energy worldwide through the use of smart devices.The current electric power networks will be more reliable,secure,flexible and durable by implementing IoT in power systems.This paper presents a brief discussion about IoT contributions in the development of power systems from a generation,transmission,distribution and consumption point of view.5G cellular networks have a great potential for the development of IoT technology.Additionally,5G cellular networks can be instrumental in supporting the greater communication needs of IoT.This review provides a comprehensive analysis about the role of 5G cellular networks in the growth of IoT technology and power systems.Large amounts of data will be generated due to the incorporation of renewable energy,deployment of the smart grid and the improvements to the electricity market.In this way,in order to realize the connection between things and people,things and things and people and people in power systems,it is essential to apply IoT in power systems.In this case,5G is providing numerous advantages to Power IoT(PIoT)by offering greater opportunities in progress and improvements;however,there are also numerous challenges with the deployment of 5G in PIoT.Finally,this review article provides an overview of the role,implications and challenges of 5G in PIoT.展开更多
This review aims to gain insight into the current research and application of operational management in the area of intelligent agriculture based on the Internet of Things(IoT),and consequently,identify existing short...This review aims to gain insight into the current research and application of operational management in the area of intelligent agriculture based on the Internet of Things(IoT),and consequently,identify existing shortcomings and potential issues.First,we use the Java application CiteSpace to analyze co-citation networks in the literature related to the operational management of IoT-based intelligent agriculture.From the literature analysis results,we identify three major fields:(1)the development of agricultural IoT(Agri-IoT)technology,(2)the precision management of agricultural production,and(3)the traceability management of agricultural products.Second,we review research in the three fields separately in detail.Third,on the basis of the research gaps identified in the review and from the perspective of integrating and upgrading the entire agricultural industry chain,additional research directions are recommended from the following aspects:The operational management of agricultural production,product processing,and product sale and after-sale service based on Agri-IoT.The theoretical research and practical application of combining operational management theories and IoT-based intelligent agriculture will provide informed decision support for stakeholders and drive the further development of the entire agriculture industry chain.展开更多
This paper first introduces the background and basic concept of digital twin city,then analyzes the relationship between digital twin city and smart city.Next,it introduces the primary supporting technologies for the ...This paper first introduces the background and basic concept of digital twin city,then analyzes the relationship between digital twin city and smart city.Next,it introduces the primary supporting technologies for the construction of a digital twin city,and finally summarizes the current application status and development trends regarding digital twin city.The authors argue that digital twin technology will face challenges in regards to data,basic knowledge base,system integration,and talent issues if it is to be more widely applied in the construction of the smart city.Additionally,the authors propose institutional and technical suggestions for solving these problems at the macro and micro levels.展开更多
Internet of Things(IoT)refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely.Nowadays,due to its multiple advantages,the IoT i...Internet of Things(IoT)refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely.Nowadays,due to its multiple advantages,the IoT is useful in many areas like environment,water monitoring,industry,public security,medicine,and so on.For covering all spaces and operating correctly,the IoT benefits from advantages of other recent technologies,like radio frequency identification,wireless sensor networks,big data,and mobile network.However,despite of the integration of various things in one network and the exchange of data among heterogeneous sources,the security of user’s data is a central question.For this reason,the authentication of interconnected objects is received as an interested importance.In 2012,Ye et al.suggested a new authentication and key exchanging protocol for Internet of things devices.However,we have proved that their protocol cannot resist to various attacks.In this paper,we propose an enhanced authentication protocol for IoT.Furthermore,we present the comparative results between our proposed scheme and other related ones.展开更多
The myriad sensing nodes in the Internet of Things(IoT)are mainly powered by battery,which has limited the lifespan and increased the maintenance costs.Herein,a self-powered IoT sensing node based on triboelectric nan...The myriad sensing nodes in the Internet of Things(IoT)are mainly powered by battery,which has limited the lifespan and increased the maintenance costs.Herein,a self-powered IoT sensing node based on triboelectric nanogenerator(TENG)is proposed for the sustainable environmental monitoring.The wind powered TENG(W-TENG)is adopted in freestanding mode with the rabbit hair and six pairs of finger electrodes.With the energy management module,the weak electrical energy from WTENG can be converted into a stable direct current(DC)2.5 V voltage for the operation of the IoT sensing node.When the storage energy exceeds 4.4 V,the node can be activated,then the microprogrammed control unit(MCU)transmits the monitoring data.Thereafter,the monitoring data will be identified and relayed to the IoT cloud platform by narrowband IoT(NBIoT)module.At a wind speed of 8.4 m/s,the node can realize the wireless monitoring and data transmission for temperature and atmosphere pressure every 30 s.This work has provided a universal strategy for sustainable IoT sensing nodes powered by environmental micro-nano mechanical energy and exhibited potential applications in IoT,big data,and environmental monitoring.展开更多
Safety surveillance is considered one of the most important factors in many constructing industries for green internet of things(IoT)applications.However,traditional safety monitoring methods require a lot of labor so...Safety surveillance is considered one of the most important factors in many constructing industries for green internet of things(IoT)applications.However,traditional safety monitoring methods require a lot of labor source.In this paper,we propose intelligent safety surveillance(ISS)method using a convolutional neural network(CNN),which is an autosupervised method to detect workers whether or not wearing helmets.First,to train the CNN-based ISS model,the labeled datasets mainly come from two aspects:1)our labeled datasets with the full labeled on both helmet and pedestrian;2)public labeled datasets with the parts labeled either on the helmet or pedestrian.To fully take advantage of all datasets,we redesign CNN structure of network and loss functions based on YOLOv3.Then,we test our proposed ISS method based on the specific detection evaluation metrics.Finally,experimental results are given to show that our proposed ISS method enables the model to fully learn the labeled information from all datasets.When the threshold of intersection over union(IoU)between the predicted box and ground truth is set to 0.5,the average precision of pedestrians and helmets can reach 0.864 and 0.891,respectively.展开更多
The Internet of Things(IoT)has been evolving for more than a decade.Technological advancements have increased its popularity,but concerns and risks related to IoT are growing considerably along with the increased numb...The Internet of Things(IoT)has been evolving for more than a decade.Technological advancements have increased its popularity,but concerns and risks related to IoT are growing considerably along with the increased number of connected devices.In 2013,a new cryptography-based infrastructure called blockchain emerged with the potential to replace the existing cloud-based infrastructure of IoT through decentralization.In this article,we provide a taxonomy of the challenges in the current IoT infrastructure,and a literature survey with a taxonomy of the issues to expect in the future of the IoT after adopting blockchain as an infrastructure.The two architectures are compared based on their strengths and weaknesses.Then a brief survey of ongoing key research activities in blockchain is presented,which will have considerable impact on overcoming the challenges encountered in the applicability of blockchain in IoT.Finally,considering the challenges and issues in both infrastructures and the latest research activities,we propose a high-level hybrid IoT approach that uses the cloud,edge/fog,and blockchain together to avoid the limitations of each infrastructure.展开更多
Enhancing the interconnection of devices and systems,the Internet of Things(IoT)is a paradigm-shifting technology.IoT security concerns are still a substantial concern despite its extraordinary advantages.This paper o...Enhancing the interconnection of devices and systems,the Internet of Things(IoT)is a paradigm-shifting technology.IoT security concerns are still a substantial concern despite its extraordinary advantages.This paper offers an extensive review of IoT security,emphasizing the technology’s architecture,important security elements,and common attacks.It highlights how important artificial intelligence(AI)is to bolstering IoT security,especially when it comes to addressing risks at different IoT architecture layers.We systematically examined current mitigation strategies and their effectiveness,highlighting contemporary challenges with practical solutions and case studies from a range of industries,such as healthcare,smart homes,and industrial IoT.Our results highlight the importance of AI methods that are lightweight and improve security without compromising the limited resources of devices and computational capability.IoT networks can ensure operational efficiency and resilience by proactively identifying and countering security risks by utilizing machine learning capabilities.This study provides a comprehensive guide for practitioners and researchers aiming to understand the intricate connection between IoT,security challenges,and AI-driven solutions.展开更多
Security issues and lnternet of Things (loT) become indispensable part in digital community as loT develops with the pervasive introduction of additional "smart" sensors and devices over the last decades, and it n...Security issues and lnternet of Things (loT) become indispensable part in digital community as loT develops with the pervasive introduction of additional "smart" sensors and devices over the last decades, and it necessitates the implementation of information security principle in digital community system. A three-level criticality model to determine the potential impact is proposed in digital community system when various devices lost in this paper. Combining the actual security requirement of digital community and characteristics of loT, a hierarchical security architecture including defense-in-deep cybersecurity and distribute secure control is proposed. A high-assurance trust model, which assumes insider compromise, which exists in the digital community, is finally proposed according to the security issues analysis.展开更多
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d...The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources...The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution.展开更多
Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects rang...Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects ranging from related definitions to details of each stage in the identification process,namely signal preprocessing,RFF feature extraction,further processing,and RFF identification.Specifically,three main steps of preprocessing are summarized,including carrier frequency offset estimation,noise elimination,and channel cancellation.Besides,three kinds of RFFs are categorized,comprising I/Q signal-based,parameter-based,and transformation-based features.Meanwhile,feature fusion and feature dimension reduction are elaborated as two main further processing methods.Furthermore,a novel framework is established from the perspective of closed set and open set problems,and the related state-of-the-art methodologies are investigated,including approaches based on traditional machine learning,deep learning,and generative models.Additionally,we highlight the challenges faced by RFF identification and point out future research trends in this field.展开更多
文摘Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture(CEA)facilities that projected the image of plant factories for urban agriculture.The advances and improvements in CEA have promoted the scientific solutions for the efficient production of plants in populated cities and multi-story buildings.Successful deployment of CEA for urban agriculture requires many components and subsystems,as well as the understanding of the external influencing factors that should be systematically considered and integrated.This review is an attempt to highlight some of the most recent advances in greenhouse technology and CEA in order to raise the awareness for technology transfer and adaptation,which is necessary for a successful transition to urban agriculture.This study reviewed several aspects of a high-tech CEA system including improvements in the frame and covering materials,environment perception and data sharing,and advanced microclimate control and energy optimization models.This research highlighted urban agriculture and its derivatives,including vertical farming,rooftop greenhouses and plant factories which are the extensions of CEA and have emerged as a response to the growing population,environmental degradation,and urbanization that are threatening food security.Finally,several opportunities and challenges have been identified in implementing the integrated CEA and vertical farming for urban agriculture.
基金supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University(77H0603)in part by the National Natural Science Foundation of China(62072248)。
文摘This paper presents a comprehensive review of emerging technologies for the internet of things(IoT)-based smart agriculture.We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT,such as unmanned aerial vehicles,wireless technologies,open-source IoT platforms,software defined networking(SDN),network function virtualization(NFV)technologies,cloud/fog computing,and middleware platforms.We also provide a classification of IoT applications for smart agriculture into seven categories:including smart monitoring,smart water management,agrochemicals applications,disease management,smart harvesting,supply chain management,and smart agricultural practices.Moreover,we provide a taxonomy and a side-by-side comparison of the state-ofthe-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.Furthermore,we present real projects that use most of the aforementioned technologies,which demonstrate their great performance in the field of smart agriculture.Finally,we highlight open research challenges and discuss possible future research directions for agricultural IoTs.
基金the Research Project 12DDB012 from Jiangsu Social Science Research Foundationgrants from National Natural Science Foundation of China(No.71671174,71472172)the Central Universities of China(No.WK2040160013).
文摘Background:The notion of smart city has grown popular over the past few years.It embraces several dimensions depending on the meaning of the word“smart”and benefits from innovative applications of new kinds of information and communications technology to support communal sharing.Methods:By relying on prior literature,this paper proposes a conceptual framework with three dimensions:(1)human,(2)technology,and(3)organization,and explores a set of fundamental factors that make a city smart from a sharing economy perspective.Results:Using this triangle framework,we discuss what emerging blockchain technology may contribute to these factors and how its elements can help smart cities develop sharing services.Conclusions:This study discusses how blockchain-based sharing services can contribute to smart cities based on a conceptual framework.We hope it can stimulate interest in theory and practice to foster discussions in this area.
文摘High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are located in a disaster area.Non-orthogonal multiple access(NOMA)-based unmanned aerial vehicle(UAV)-aided network is emerging as a promising technique to overcome the above challenges.In this paper,an emergency communications framework of NOMA-based UAV-aided networks is established,where the disasters scenarios can be divided into three broad categories that have named emergency areas,wide areas and dense areas.First,a UAV-enabled uplink NOMA system is established to gather information from IoT devices in emergency areas.Then,a joint UAV deployment and resource allocation scheme for a multi-UAV enabled NOMA system is developed to extend the UAV coverage for IoT devices in wide areas.Furthermore,a UAV equipped with an antenna array has been considered to provide wireless service for multiple devices that are densely distributed in disaster areas.Simulation results are provided to validate the effectiveness of the above three schemes.Finally,potential research directions and challenges are also highlighted and discussed.
基金This research has been supported by the National Science Foundation(under grant#1723596)the National Security Agency(under grant#H98230-17-1-0355).
文摘Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk.Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications.As an extension of the cloud,the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications.Although there are some research efforts in this area,edge-based security designs for IoT applications are still in its infancy.This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs.We first present an edge-centric IoT architecture.Then,we extensively review the edge-based IoT security research efforts in the context of security architecture designs,firewalls,intrusion detection systems,authentication and authorization protocols,and privacy-preserving mechanisms.Finally,we propose our insight into future research directions and open research issues.
文摘The blockchain represents emerging technologies and future trends.For the traditional social organization and mode of operation,the development of the blockchain is a revolution.As a decentralized infrastructure and distributed general ledger agreement,the blockchain presents us with a great opportunity to establish data security and trust for automation and intelligence development in the Internet of Things(IoT)and it creates a new un-centralized programmable smart ecosystem.Our research synthesizes and analyses extant articles that focus on blockchain-related perspectives which will potentially play an important role in sustainable development in the world.Blockchain applications and future directions always attract more attention.Blockchain technology provides strong scalability and interoperability between the intelligent and the physical worlds.
文摘The Internet of Things(IoT)is playing an important role in providing access to affordable,clean and green energy worldwide through the use of smart devices.The current electric power networks will be more reliable,secure,flexible and durable by implementing IoT in power systems.This paper presents a brief discussion about IoT contributions in the development of power systems from a generation,transmission,distribution and consumption point of view.5G cellular networks have a great potential for the development of IoT technology.Additionally,5G cellular networks can be instrumental in supporting the greater communication needs of IoT.This review provides a comprehensive analysis about the role of 5G cellular networks in the growth of IoT technology and power systems.Large amounts of data will be generated due to the incorporation of renewable energy,deployment of the smart grid and the improvements to the electricity market.In this way,in order to realize the connection between things and people,things and things and people and people in power systems,it is essential to apply IoT in power systems.In this case,5G is providing numerous advantages to Power IoT(PIoT)by offering greater opportunities in progress and improvements;however,there are also numerous challenges with the deployment of 5G in PIoT.Finally,this review article provides an overview of the role,implications and challenges of 5G in PIoT.
基金This work was supported by grants from the Natural Science Foundation of China Key Project(Grant No.71531002)Innovative Group Project(Grant No.71421001)General Project(Grant No.71571027).
文摘This review aims to gain insight into the current research and application of operational management in the area of intelligent agriculture based on the Internet of Things(IoT),and consequently,identify existing shortcomings and potential issues.First,we use the Java application CiteSpace to analyze co-citation networks in the literature related to the operational management of IoT-based intelligent agriculture.From the literature analysis results,we identify three major fields:(1)the development of agricultural IoT(Agri-IoT)technology,(2)the precision management of agricultural production,and(3)the traceability management of agricultural products.Second,we review research in the three fields separately in detail.Third,on the basis of the research gaps identified in the review and from the perspective of integrating and upgrading the entire agricultural industry chain,additional research directions are recommended from the following aspects:The operational management of agricultural production,product processing,and product sale and after-sale service based on Agri-IoT.The theoretical research and practical application of combining operational management theories and IoT-based intelligent agriculture will provide informed decision support for stakeholders and drive the further development of the entire agriculture industry chain.
基金National Natural Science Foundation of China(42071441)National Key R&D Program of China(2018YFB2100702)Spatio-temporal Information Cloud Platform Project of Smart Guangzhou(GZIT2016-A5-147)。
文摘This paper first introduces the background and basic concept of digital twin city,then analyzes the relationship between digital twin city and smart city.Next,it introduces the primary supporting technologies for the construction of a digital twin city,and finally summarizes the current application status and development trends regarding digital twin city.The authors argue that digital twin technology will face challenges in regards to data,basic knowledge base,system integration,and talent issues if it is to be more widely applied in the construction of the smart city.Additionally,the authors propose institutional and technical suggestions for solving these problems at the macro and micro levels.
文摘Internet of Things(IoT)refers to a new extended network that enables to any object to be linked to the Internet in order to exchange data and to be controlled remotely.Nowadays,due to its multiple advantages,the IoT is useful in many areas like environment,water monitoring,industry,public security,medicine,and so on.For covering all spaces and operating correctly,the IoT benefits from advantages of other recent technologies,like radio frequency identification,wireless sensor networks,big data,and mobile network.However,despite of the integration of various things in one network and the exchange of data among heterogeneous sources,the security of user’s data is a central question.For this reason,the authentication of interconnected objects is received as an interested importance.In 2012,Ye et al.suggested a new authentication and key exchanging protocol for Internet of things devices.However,we have proved that their protocol cannot resist to various attacks.In this paper,we propose an enhanced authentication protocol for IoT.Furthermore,we present the comparative results between our proposed scheme and other related ones.
基金supported by the National Key Research&Development Project from Minister of Science and Technology(No.2021YFA1201604)the National Natural Science Foundation of China(Nos.52250112 and 51922023)Fundamental Research Funds for the Central Universities(No.E1EG6804).
文摘The myriad sensing nodes in the Internet of Things(IoT)are mainly powered by battery,which has limited the lifespan and increased the maintenance costs.Herein,a self-powered IoT sensing node based on triboelectric nanogenerator(TENG)is proposed for the sustainable environmental monitoring.The wind powered TENG(W-TENG)is adopted in freestanding mode with the rabbit hair and six pairs of finger electrodes.With the energy management module,the weak electrical energy from WTENG can be converted into a stable direct current(DC)2.5 V voltage for the operation of the IoT sensing node.When the storage energy exceeds 4.4 V,the node can be activated,then the microprogrammed control unit(MCU)transmits the monitoring data.Thereafter,the monitoring data will be identified and relayed to the IoT cloud platform by narrowband IoT(NBIoT)module.At a wind speed of 8.4 m/s,the node can realize the wireless monitoring and data transmission for temperature and atmosphere pressure every 30 s.This work has provided a universal strategy for sustainable IoT sensing nodes powered by environmental micro-nano mechanical energy and exhibited potential applications in IoT,big data,and environmental monitoring.
文摘Safety surveillance is considered one of the most important factors in many constructing industries for green internet of things(IoT)applications.However,traditional safety monitoring methods require a lot of labor source.In this paper,we propose intelligent safety surveillance(ISS)method using a convolutional neural network(CNN),which is an autosupervised method to detect workers whether or not wearing helmets.First,to train the CNN-based ISS model,the labeled datasets mainly come from two aspects:1)our labeled datasets with the full labeled on both helmet and pedestrian;2)public labeled datasets with the parts labeled either on the helmet or pedestrian.To fully take advantage of all datasets,we redesign CNN structure of network and loss functions based on YOLOv3.Then,we test our proposed ISS method based on the specific detection evaluation metrics.Finally,experimental results are given to show that our proposed ISS method enables the model to fully learn the labeled information from all datasets.When the threshold of intersection over union(IoU)between the predicted box and ground truth is set to 0.5,the average precision of pedestrians and helmets can reach 0.864 and 0.891,respectively.
基金Project supported by the National Natural Science Foundation of China(No.61370073)the National High-Tech R&D Program of China(No.2007AA01Z423)the Science and Technology Department of Sichuan Province,China。
文摘The Internet of Things(IoT)has been evolving for more than a decade.Technological advancements have increased its popularity,but concerns and risks related to IoT are growing considerably along with the increased number of connected devices.In 2013,a new cryptography-based infrastructure called blockchain emerged with the potential to replace the existing cloud-based infrastructure of IoT through decentralization.In this article,we provide a taxonomy of the challenges in the current IoT infrastructure,and a literature survey with a taxonomy of the issues to expect in the future of the IoT after adopting blockchain as an infrastructure.The two architectures are compared based on their strengths and weaknesses.Then a brief survey of ongoing key research activities in blockchain is presented,which will have considerable impact on overcoming the challenges encountered in the applicability of blockchain in IoT.Finally,considering the challenges and issues in both infrastructures and the latest research activities,we propose a high-level hybrid IoT approach that uses the cloud,edge/fog,and blockchain together to avoid the limitations of each infrastructure.
文摘Enhancing the interconnection of devices and systems,the Internet of Things(IoT)is a paradigm-shifting technology.IoT security concerns are still a substantial concern despite its extraordinary advantages.This paper offers an extensive review of IoT security,emphasizing the technology’s architecture,important security elements,and common attacks.It highlights how important artificial intelligence(AI)is to bolstering IoT security,especially when it comes to addressing risks at different IoT architecture layers.We systematically examined current mitigation strategies and their effectiveness,highlighting contemporary challenges with practical solutions and case studies from a range of industries,such as healthcare,smart homes,and industrial IoT.Our results highlight the importance of AI methods that are lightweight and improve security without compromising the limited resources of devices and computational capability.IoT networks can ensure operational efficiency and resilience by proactively identifying and countering security risks by utilizing machine learning capabilities.This study provides a comprehensive guide for practitioners and researchers aiming to understand the intricate connection between IoT,security challenges,and AI-driven solutions.
基金Supported by the National Science Foundation of China of Shanxi(2015011040)
文摘Security issues and lnternet of Things (loT) become indispensable part in digital community as loT develops with the pervasive introduction of additional "smart" sensors and devices over the last decades, and it necessitates the implementation of information security principle in digital community system. A three-level criticality model to determine the potential impact is proposed in digital community system when various devices lost in this paper. Combining the actual security requirement of digital community and characteristics of loT, a hierarchical security architecture including defense-in-deep cybersecurity and distribute secure control is proposed. A high-assurance trust model, which assumes insider compromise, which exists in the digital community, is finally proposed according to the security issues analysis.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R333)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
文摘The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution.
基金supported in part by the National Natural Science Foundation of China under Grant 62171120 and 62001106National Key Research and Development Program of China(2020YFE0200600)+2 种基金Jiangsu Provincial Key Laboratory of Network and Information Security No.BM2003201Guangdong Key Research and Development Program under Grant2020B0303010001Purple Mountain Laboratories for Network and Communication Security
文摘Radio frequency fingerprint(RFF)identification is a promising technique for identifying Internet of Things(IoT)devices.This paper presents a comprehensive survey on RFF identification,which covers various aspects ranging from related definitions to details of each stage in the identification process,namely signal preprocessing,RFF feature extraction,further processing,and RFF identification.Specifically,three main steps of preprocessing are summarized,including carrier frequency offset estimation,noise elimination,and channel cancellation.Besides,three kinds of RFFs are categorized,comprising I/Q signal-based,parameter-based,and transformation-based features.Meanwhile,feature fusion and feature dimension reduction are elaborated as two main further processing methods.Furthermore,a novel framework is established from the perspective of closed set and open set problems,and the related state-of-the-art methodologies are investigated,including approaches based on traditional machine learning,deep learning,and generative models.Additionally,we highlight the challenges faced by RFF identification and point out future research trends in this field.