期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
深度学习的轻量化神经网络结构研究综述 被引量:27
1
作者 王军 冯孙铖 程勇 《计算机工程》 CAS CSCD 北大核心 2021年第8期1-13,共13页
随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设... 随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设计的轻量化方法、基于神经网络结构搜索的轻量化方法和基于自动模型压缩的轻量化方法的创新点与优劣势,总结与归纳上述3种主流轻量化方法中性能优异的网络结构并分析各自的优势和局限性。在此基础上,指出轻量化网络结构设计所面临的挑战,同时对其应用方向及未来发展趋势进行展望。 展开更多
关键词 深度学习 轻量化设计 深度可分离卷积 octave卷积 神经网络结构搜索 模型压缩
下载PDF
基于深度学习的铁路异物侵限快速检测方法
2
作者 王辉 姜朱丰 +3 位作者 吴雨杰 范自柱 罗国亮 杨辉 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期2086-2098,共13页
针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法。首先,以ResNet-18网络作为铁路限界检测的主... 针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法。首先,以ResNet-18网络作为铁路限界检测的主干网络,利用辅助检测模块提升限界检测精度,达到特征提取速度快,语义信息丰富充足等目标。同时采用基于行锚框的分割算法检测轨道线坐标位置,结合标准轨距下的限界定义确定铁路异物入侵限界的范围,以减少侵限异物检测的区域。其次,设计基于Octave卷积的层内多尺度残差模块,将单通道卷积变为基于图像频率的双通道卷积,以降低卷积计算量,进一步提升异物侵限算法的检测速度。最后,引入空间金字塔模块和特征自适应融合模块,实现高、低级语义信息交换,从而增加网络对不同尺度目标的感知能力,并减少语义冲突问题。通过对比实验验证异物侵限检测算法的精度、速度和有效性。实验结果表明,所述方法能以172帧/s的速度对轨道位置和限界区域进行检测,精确度达98.12%。与其他算法相比,在大中小3种目标尺度上都超越了其他对比算法。所提出的融合轨道限界和侵限异物检测的方法,在保证精度的前提下,速度达到YOLOv3算法的2倍,能够满足列车对侵限异物的实时检测需求。 展开更多
关键词 异物侵限检测 octave卷积 行锚框 铁路限界检测 空间金字塔 特征自适应融合
下载PDF
基于Octave卷积的超声心动图左心室分割方法 被引量:4
3
作者 唐柳 王晓东 +2 位作者 陈哲彬 文含 姚宇 《计算机应用》 CSCD 北大核心 2020年第S01期215-219,共5页
针对传统卷积神经网络(CNN)对左心室的分割精度低且在特征提取过程中存在特征冗余的问题,在传统卷积神经网络的基础上提出基于Octave卷积的超声心动图左心室分割方法。首先,使用Octave卷积对图像进行特征提取,将特征图分为高频部分和低... 针对传统卷积神经网络(CNN)对左心室的分割精度低且在特征提取过程中存在特征冗余的问题,在传统卷积神经网络的基础上提出基于Octave卷积的超声心动图左心室分割方法。首先,使用Octave卷积对图像进行特征提取,将特征图分为高频部分和低频部分,在卷积的过程中减少了低频信息的使用,从而降低了网络模型的计算量;其次,提出了新的损失函数,将交叉熵和Dice系数进行加权结合。实验结果表明,利用该方法在二腔心数据集上测试,其分割结果的平均像素交并比(MIoU)能够达到79.21%,较传统的U-net卷积神经网络精度提升6.1个百分点,在拥有低计算量的同时提高了分割精度。 展开更多
关键词 超声心动图 图像分割 octave卷积 左心室
下载PDF
基于3D Octave卷积和胶囊网络的高光谱图像分类
4
作者 陈小勇 郭元术 梁雅博 《现代电子技术》 2023年第5期29-34,共6页
针对当前胶囊网络分类模型在高光谱图像分类中存在空谱联合信息利用不足和收敛较慢的问题,提出一种结合多尺度Octave三维卷积和胶囊网络的分类模型。首先,使用主成分分析(PCA)来降低高维的光谱特征并保留其关键特征;其次,通过多尺度Oct... 针对当前胶囊网络分类模型在高光谱图像分类中存在空谱联合信息利用不足和收敛较慢的问题,提出一种结合多尺度Octave三维卷积和胶囊网络的分类模型。首先,使用主成分分析(PCA)来降低高维的光谱特征并保留其关键特征;其次,通过多尺度Octave三维卷积模块使模型能够适应当前数据集目标尺寸跨度较大的特点,在减少空间冗余的同时提高高光谱图像的空谱联合信息的利用;最后,对动态路由算法进行改进,使用向量长度的相似性与方向的相似性来衡量两个向量的一致程度,从而解决网络在训练过程中收敛较慢的问题。为了验证改进后模型的有效性,选择Pavia University公开高光谱数据集,并且通过OA、AA以及Kappa系数将分类结果与当前主流的分类模型进行对比实验。结果表明,在Pavia University数据集上,改进后的模型在OA、AA以及Kappa系数上的精度要高于其他模型,因此,该模型能够更好地应用于高光谱遥感图像分类任务中。 展开更多
关键词 高光谱图像 图像分类 3D octave卷积 胶囊网络 分类模型 主成分分析 算法改进
下载PDF
基于改进MultiResUNet网络的甲状腺超声图像分割
5
作者 石威 李昕泽 +3 位作者 黄文昌 王宁浩 焦阳 崔崤峣 《声学技术》 CSCD 北大核心 2022年第2期228-234,共7页
甲状腺超声图像分割在临床超声图像研究中有很重要的意义。针对甲状腺超声图像信噪比低,斑点噪声多,且甲状腺形态不确定等问题,提出了一种改进的MultiResUNet分割网络(称为Oct-MRU-Net网络)。该方法在MultiResUNet网络的基本结构的基础... 甲状腺超声图像分割在临床超声图像研究中有很重要的意义。针对甲状腺超声图像信噪比低,斑点噪声多,且甲状腺形态不确定等问题,提出了一种改进的MultiResUNet分割网络(称为Oct-MRU-Net网络)。该方法在MultiResUNet网络的基本结构的基础上引入Octave卷积,并采用改进的Inception模块学习不同空间尺度的特征,将训练过程中的特征图按通道方向分为高低频特征。其中,高频特征描述图像细节和边缘信息,低频特征描述图像整体轮廓信息。在甲状腺超声图像分割过程中可以重点关注高频信息,减少空间冗余,从而实现对边缘更加精细的分割。实验结果表明,Oct-MRU-Net网络的性能相较于U-Net网络和MultiResUNet网络都有较大的提升,说明该网络对甲状腺超声图像的分割效果较好。 展开更多
关键词 甲状腺 超声 octave卷积 MultiResUNet
下载PDF
基于3D Octave卷积和Bi-RNN注意力网络的高光谱图像分类方法 被引量:2
6
作者 梁联晖 李军 张绍泉 《光子学报》 EI CAS CSCD 北大核心 2021年第9期276-288,共13页
传统卷积神经网络模型在高光谱图像分类生成特征图的空间维度中存在大量的空间特征信息冗余,而且把高光谱图像单个像元上的光谱带数据看作是无序高维向量进行数据处理,并不符合光谱数据的特性,极大影响了模型的运行效率和分类性能。针... 传统卷积神经网络模型在高光谱图像分类生成特征图的空间维度中存在大量的空间特征信息冗余,而且把高光谱图像单个像元上的光谱带数据看作是无序高维向量进行数据处理,并不符合光谱数据的特性,极大影响了模型的运行效率和分类性能。针对该问题,提出一种三维Octave卷积和双向循环神经网络注意力网络相结合的高光谱图像分类方法。首先,利用三维Octave卷积获取高光谱图像的空间特征的同时减少空间特征冗余信息。其次,利用Bi-RNN光谱注意力网络将光谱带数据视为有序序列以获取高光谱图像的光谱信息。然后,通过全连接层将空间和光谱特征图连接起来实现特征融合。最后,经过softmax输出分类结果。实验结果表明,所提方法在Pavia University和Botswana两个数据集上的分类精度分别达到了99.97%和99.79%,与其他主流算法相比,该方法可以充分利用空间和光谱特征信息,具有更佳的分类性能。 展开更多
关键词 高光谱图像分类 卷积神经网络 三维octave卷积 双向循环神经网络 注意力网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部