In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the wi...In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.展开更多
The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically revi...The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.展开更多
Freshwater plays a vital role in global sustainability by improving human lives and protecting nature.In the Lancang-Mekong River Basin(LMRB),sustainable development is principally dependent upon precipitation that pr...Freshwater plays a vital role in global sustainability by improving human lives and protecting nature.In the Lancang-Mekong River Basin(LMRB),sustainable development is principally dependent upon precipitation that predominantly controls freshwater resources availability required for both life and livelihood of~70 million people.Hence,this study comprehensively analyzed long-term historical precipitation patterns(in terms of trends,variability,and links to climate teleconnections)throughout the LMRB as well as its upper(Lancang River Basin,LRB)and lower(Mekong River Basin,MRB)parts employing six gauge-based gridded climate products:Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources(APHRODITE),Climate Prediction Center(CPC),Climate Research Unit(CRU),Global Precipitation Climatology Center(GPCC),Precipitation Reconstruction over Land(PRECL),and University of Delaware(UDEL).Accordingly,annual and seasonal(dry and wet)precipitation time series were calculated for three study periods:century-long outlook(1901-2010),mid-past(1951-2010),and recent decades(1981-2010).However,the role of climate teleconnections in precipitation variability over the LMRB was only identified during their available temporal coverages:mid-past and recent decades.The results generally showed that:(i)both annual and seasonal precipitation increased across all three basins in 1981-2010;(ii)wet and dry seasons got drier and wetter,respectively,in all basins in 1951-2010;(iii)all such changes were fundamentally attributed to increases in precipitation variability on both annual and seasonal scales over time;(iv)these variations were most strongly associated with the Pacific Decadal Oscillation(PDO),Atlantic Multi-decadal Oscillation(AMO)and East Pacific/North Pacific(EP/NP)pattern in the LMRB and the MRB during 1951-2010,but with the North Sea-Caspian Pattern(NCP)and the Southern Annular Mode(SAM)in the LRB;(v)such relationships got stronger in 1981-2010,while the Southern Oscillation Index(SO展开更多
The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Me...The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.展开更多
Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, ...Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, when the precipitation tends to be nearly normal throughout the valley, which would inevitably increase difficulties of making short-term prediction of the rainfall. For this reason, EOF analysis is made on 15 related stations’ precipitation from June to July during 1951─2004, revealing that the EOF2 mode shows largely a north-south seesaw-like pattern, and thereby classifying Meiyu patterns into two types: "northern drought and southern flood (NDSF)" and "northern flood and southern drought (NFSD)". Afterwards, the authors investigated ocean-atmospheric characteristics when these two anomalous types occured using the NCEP reanalysis (version 1) and the extended reconstructed SSTs (version 2). The results show that in the NDSF years, the low-level frontal area and moisture convergence center lie more southward, accompanied by weaker subtropical summer mon- soon over East Asia, with the western Pacific subtropical high and 200 hPa South Asia High being more southward. Both the Northern and Southern Hemisphere Annular Modes are stronger than normal in preceding February; SST is higher off China during boreal winter and spring and the opposite happens in the NFSD years. Also, this seesaw-form Meiyu rainfall distribution might be affected to some degree by the previous ENSO event.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)Project(Grant No.41790474)Shandong Natural Science Foundation Project(Grant No.ZR2019ZD12)Fundamental Research Funds for the Central Universities(Grant No.201962009).
文摘In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.
文摘The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20060401,XDA20060402)the National Natural Science Foundation of China(Grant No.41625001)the High-level Special Funding of the Southern University of Science and Technology(Grant No.G02296302,G02296402).
文摘Freshwater plays a vital role in global sustainability by improving human lives and protecting nature.In the Lancang-Mekong River Basin(LMRB),sustainable development is principally dependent upon precipitation that predominantly controls freshwater resources availability required for both life and livelihood of~70 million people.Hence,this study comprehensively analyzed long-term historical precipitation patterns(in terms of trends,variability,and links to climate teleconnections)throughout the LMRB as well as its upper(Lancang River Basin,LRB)and lower(Mekong River Basin,MRB)parts employing six gauge-based gridded climate products:Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources(APHRODITE),Climate Prediction Center(CPC),Climate Research Unit(CRU),Global Precipitation Climatology Center(GPCC),Precipitation Reconstruction over Land(PRECL),and University of Delaware(UDEL).Accordingly,annual and seasonal(dry and wet)precipitation time series were calculated for three study periods:century-long outlook(1901-2010),mid-past(1951-2010),and recent decades(1981-2010).However,the role of climate teleconnections in precipitation variability over the LMRB was only identified during their available temporal coverages:mid-past and recent decades.The results generally showed that:(i)both annual and seasonal precipitation increased across all three basins in 1981-2010;(ii)wet and dry seasons got drier and wetter,respectively,in all basins in 1951-2010;(iii)all such changes were fundamentally attributed to increases in precipitation variability on both annual and seasonal scales over time;(iv)these variations were most strongly associated with the Pacific Decadal Oscillation(PDO),Atlantic Multi-decadal Oscillation(AMO)and East Pacific/North Pacific(EP/NP)pattern in the LMRB and the MRB during 1951-2010,but with the North Sea-Caspian Pattern(NCP)and the Southern Annular Mode(SAM)in the LRB;(v)such relationships got stronger in 1981-2010,while the Southern Oscillation Index(SO
基金supported by the Space Geodesy Technology Development Program of Korea Astronomy and Space Science Institutesupported by the NSFC(grant Nos.41631072,41721003,41574007 and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics(grant No.B17033)
文摘The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.
基金Supported by the National Natural Science Foundation of China (Grant No. 40605022)the National Basic Research Program of China (Grant No. 2006CB403607)the Key Project of the Ministry of Science and Technology, China "South China Sea Monsoon Experiment (SCSMEX)"
文摘Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, when the precipitation tends to be nearly normal throughout the valley, which would inevitably increase difficulties of making short-term prediction of the rainfall. For this reason, EOF analysis is made on 15 related stations’ precipitation from June to July during 1951─2004, revealing that the EOF2 mode shows largely a north-south seesaw-like pattern, and thereby classifying Meiyu patterns into two types: "northern drought and southern flood (NDSF)" and "northern flood and southern drought (NFSD)". Afterwards, the authors investigated ocean-atmospheric characteristics when these two anomalous types occured using the NCEP reanalysis (version 1) and the extended reconstructed SSTs (version 2). The results show that in the NDSF years, the low-level frontal area and moisture convergence center lie more southward, accompanied by weaker subtropical summer mon- soon over East Asia, with the western Pacific subtropical high and 200 hPa South Asia High being more southward. Both the Northern and Southern Hemisphere Annular Modes are stronger than normal in preceding February; SST is higher off China during boreal winter and spring and the opposite happens in the NFSD years. Also, this seesaw-form Meiyu rainfall distribution might be affected to some degree by the previous ENSO event.