Based on the analysis of ocean dynamic condition and sediment environment, conclusions can be drawn that strong wind is an essential factor influencing sudden sedimentation in outer channel. Through theoretical analys...Based on the analysis of ocean dynamic condition and sediment environment, conclusions can be drawn that strong wind is an essential factor influencing sudden sedimentation in outer channel. Through theoretical analysis, it changes the complex process that wind raises wave, wave tilts sediment and current transports sediment into a comprehensive factor, and obtains mathematical formula between effective wind energy and the thickness of sudden sedimentation. The parametees in this formula are determined with field data of Huanghua Port. It may be used to predict siltation thickness and volume along the channel. By analyzing and comparing the difference in ocean hydrodynamic conditions and seabed material between Huanghua Port and Binzhou Port, the proposed formula can be used to predict sudden sedimentation in Binzhou Port and the calculated results is rehable. By predicting it on different combination plans among different recurrence in- tervals, entrance locations and channel classes, it provides references for the plane design of Binzhou Port.展开更多
In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located o...In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.展开更多
Under the background of energy crisis, the development of renewable energy will significantly alleviate the energy and environmental crisis. On the basis of the European Centre for Medium-Range Weather Forecasts(ECMW...Under the background of energy crisis, the development of renewable energy will significantly alleviate the energy and environmental crisis. On the basis of the European Centre for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERA-interim) wind data, the annual and seasonal grade divisions of the global offshore wind energy are investigated. The results show that the annual mean offshore wind energy has great potential. The wind energy over the westerly oceans of the Northern and Southern Hemispheres is graded as Class 7(the highest), whereas that over most of the mid-low latitude oceans are higher than Class 4. The wind energy over the Arctic Ocean(Class 4) is more optimistic than the traditional evaluations. Seasonally, the westerly oceans of the Northern Hemisphere with a Class 7 wind energy are found to be largest in January, followed by April and October, and smallest in July. The area of the Class 7 wind energy over the westerly oceans of the Southern Hemisphere are found to be largest in July and slightly smaller in the other months. In July, the wind energy over the Arabian Sea and the Bay of Bengal is graded as Class 7, which is obviously richer than that in other months. It is shown that in this data set in April and October, the majority of the northern Indian Ocean are regions of indigent wind energy resource.展开更多
文摘Based on the analysis of ocean dynamic condition and sediment environment, conclusions can be drawn that strong wind is an essential factor influencing sudden sedimentation in outer channel. Through theoretical analysis, it changes the complex process that wind raises wave, wave tilts sediment and current transports sediment into a comprehensive factor, and obtains mathematical formula between effective wind energy and the thickness of sudden sedimentation. The parametees in this formula are determined with field data of Huanghua Port. It may be used to predict siltation thickness and volume along the channel. By analyzing and comparing the difference in ocean hydrodynamic conditions and seabed material between Huanghua Port and Binzhou Port, the proposed formula can be used to predict sudden sedimentation in Binzhou Port and the calculated results is rehable. By predicting it on different combination plans among different recurrence in- tervals, entrance locations and channel classes, it provides references for the plane design of Binzhou Port.
文摘In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.
基金The Junior Fellowships for CAST Advanced Innovation Think-tank Program under contract No.DXB-ZKQN-2016-019the National Key Basic Research and Development Program of China under contract No.2013CB956200+2 种基金the National Natural Science Foundation of China under contract No.41275086the Academic Program of Dalian Naval Academy under contract No.2016-01the Natural Science Foundation of Shandong Province under contract No.ZR2016DL09
文摘Under the background of energy crisis, the development of renewable energy will significantly alleviate the energy and environmental crisis. On the basis of the European Centre for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERA-interim) wind data, the annual and seasonal grade divisions of the global offshore wind energy are investigated. The results show that the annual mean offshore wind energy has great potential. The wind energy over the westerly oceans of the Northern and Southern Hemispheres is graded as Class 7(the highest), whereas that over most of the mid-low latitude oceans are higher than Class 4. The wind energy over the Arctic Ocean(Class 4) is more optimistic than the traditional evaluations. Seasonally, the westerly oceans of the Northern Hemisphere with a Class 7 wind energy are found to be largest in January, followed by April and October, and smallest in July. The area of the Class 7 wind energy over the westerly oceans of the Southern Hemisphere are found to be largest in July and slightly smaller in the other months. In July, the wind energy over the Arabian Sea and the Bay of Bengal is graded as Class 7, which is obviously richer than that in other months. It is shown that in this data set in April and October, the majority of the northern Indian Ocean are regions of indigent wind energy resource.