In this paper, we have presented a novel tracking method aiming at detecting objects and maintaining their la-bel/identification over the time. The key factors of this method are to use depth information and different...In this paper, we have presented a novel tracking method aiming at detecting objects and maintaining their la-bel/identification over the time. The key factors of this method are to use depth information and different strategies to track objects under various occlusion scenarios. The foreground objects are detected and refined by background subtraction and shadow cancellation. The occlusion detection is based on information of foreground blobs in successive frames. The occlusion regions are projected to the projection plane XZ to analysis occlusion situation. According to the occlusion analysis results, different objects’ corresponding strategies are introduced to track objects under various occlusion scenarios including tracking occluded objects in similar depth layer and in different depth layers. The experimental results show that our proposed method can track the moving objects under the most typical and challenging occlusion scenarios.展开更多
针对基于孪生网络的目标跟踪算法在相似目标干扰和发生遮挡时容易丢失目标的问题,提出一种基于多注意力融合的抗遮挡目标跟踪算法(anti-occlusion target tracking based on multi-attention fusion, AOTMAF)。为更好地模拟遮挡图片,引...针对基于孪生网络的目标跟踪算法在相似目标干扰和发生遮挡时容易丢失目标的问题,提出一种基于多注意力融合的抗遮挡目标跟踪算法(anti-occlusion target tracking based on multi-attention fusion, AOTMAF)。为更好地模拟遮挡图片,引入渐进式随机遮挡模块,由易到难地随机生成遮挡块对图像进行多区域遮挡,通过人工模拟被遮挡图像的方式扩充负样本数据集,提升模型在遮挡情况下对判别性特征的提取能力。从深度、高度与宽度三个维度挖掘特征图通道信息,并通过融合空间注意力,聚合特征图上每个位置的空间依赖性,增强特征表达能力,进一步提高跟踪的鲁棒性。实验结果表明,在OTB100、VOT2018、GOT-10K公开数据集上,本研究方法在复杂场景下能有效提升跟踪精度和鲁棒性。展开更多
文摘In this paper, we have presented a novel tracking method aiming at detecting objects and maintaining their la-bel/identification over the time. The key factors of this method are to use depth information and different strategies to track objects under various occlusion scenarios. The foreground objects are detected and refined by background subtraction and shadow cancellation. The occlusion detection is based on information of foreground blobs in successive frames. The occlusion regions are projected to the projection plane XZ to analysis occlusion situation. According to the occlusion analysis results, different objects’ corresponding strategies are introduced to track objects under various occlusion scenarios including tracking occluded objects in similar depth layer and in different depth layers. The experimental results show that our proposed method can track the moving objects under the most typical and challenging occlusion scenarios.
文摘针对基于孪生网络的目标跟踪算法在相似目标干扰和发生遮挡时容易丢失目标的问题,提出一种基于多注意力融合的抗遮挡目标跟踪算法(anti-occlusion target tracking based on multi-attention fusion, AOTMAF)。为更好地模拟遮挡图片,引入渐进式随机遮挡模块,由易到难地随机生成遮挡块对图像进行多区域遮挡,通过人工模拟被遮挡图像的方式扩充负样本数据集,提升模型在遮挡情况下对判别性特征的提取能力。从深度、高度与宽度三个维度挖掘特征图通道信息,并通过融合空间注意力,聚合特征图上每个位置的空间依赖性,增强特征表达能力,进一步提高跟踪的鲁棒性。实验结果表明,在OTB100、VOT2018、GOT-10K公开数据集上,本研究方法在复杂场景下能有效提升跟踪精度和鲁棒性。