以无人机多光谱和倾斜影像为数据源,运用面向对象自动分类的方法,首先利用分型网络演化分割算法(Fractal Net Evolution Approach,FNEA)进行分割实验,确定研究区每个地类最优分割尺度,并结合多光谱影像的光谱特征、纹理特征、空间特征...以无人机多光谱和倾斜影像为数据源,运用面向对象自动分类的方法,首先利用分型网络演化分割算法(Fractal Net Evolution Approach,FNEA)进行分割实验,确定研究区每个地类最优分割尺度,并结合多光谱影像的光谱特征、纹理特征、空间特征、语义关系以及通过倾斜摄影提取的数字表面模型(Digital Surface Model,DSM)和其衍生的坡度数据等,构建研究区分类规则集,并采用多尺度分割后的多层次信息提取方法,将地物分为3个尺度,在不同尺度下提取相应的地物,总体精度为88.03%,Kappa系数为86.12%,分类结果较好。同时设置对比实验,利用传统的决策树方法分类,其总体精度仅为77.78%,Kappa系数为74.23%。研究表明,针对无人机的高分辨率多光谱影像面向对象的多尺度信息提取方法在信息提取时要优于决策树分类方法,同时验证了该多光谱传感器在信息提取上应用的可行性。展开更多
随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量...随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量;然后,利用SLIC(simple linear iterative clustering)算法将点云对应的影像分割成超像素,再根据点云和影像间的关系,将点云聚类成超体素对象,并计算每个对象的特征向量;在此基础上,采用随机森林算法对超体素进行分类;最后,根据语义信息对分类结果进行后处理获得最终的点云分类结果。2组典型实验数据结果表明,总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%。展开更多
文摘随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量;然后,利用SLIC(simple linear iterative clustering)算法将点云对应的影像分割成超像素,再根据点云和影像间的关系,将点云聚类成超体素对象,并计算每个对象的特征向量;在此基础上,采用随机森林算法对超体素进行分类;最后,根据语义信息对分类结果进行后处理获得最终的点云分类结果。2组典型实验数据结果表明,总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%。