The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water...The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water is simulated and the hydrodynamic drag,lateral force and yaw moment acting on the hull are obtained by a general purpose computational fluid dynamics(CFD) package FLUENT with shear-stress transport(SST) k—ωturbulence model.The numerical computation is performed at different drift angels and water depths.The numerical results are compared with experimental results,and a good agreement is demonstrated.展开更多
In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3 D complex sites subjected...In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3 D complex sites subjected to obliquely incident SV and P waves. Using this method, we build a fictitious auxiliary model along the normal direction of the boundary of the area of interest, with the model’s localized geological features remaining the same along a vector normal to this boundary. This model is divided into five independent auxiliary models, which are then dynamically analyzed to obtain the equivalent input seismic loads. Unlike traditional methods, in this new technique, the mechanical behavior of the auxiliary model can be nonlinear, and its geometry can be arbitrary. In addition, a detailed description of the steps to calculate the equivalent input seismic loads is given. Numerical examples of incident plane-wave propagation at uniform sites with local features validate the effectiveness of this method. It is also applicable to elastic and non-elastic problems.展开更多
Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane e...Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane effect of a single-point mooring system normally results in the satisfactory hydrodynamic performance of the side-by-side configuration in head seas. Nevertheless, the changes in wave directions in real sea conditions can significantly influence the relative motions. This article studies the relative motions of the side-by-side system by using the theoretical analysis method and the numerical calculation method. Based on the three-dimensional potential theory modified by artificial damping-lid method, the frequency-domain hydrodynamic coefficients can be improved to calculate the retardation functions for the multi-body problem. An in-house code is then developed to perform the time-domain simulation of two vessels, through which the relative motions are subsequently obtained. A range of oblique waves are chosen for the extensive calculation of relative motions between the two vessels, which are further analyzed in terms of the phase shift of motion responses induced by specific resonant wave patterns. Investigation results show that wave directions have a significant influence on the relative sway, roll, and yaw motions. Under the circumstance that the absolute phase shift between the roll motions of two vessels approaches 180°, stronger relative motions are induced when LNGC is on the weather side.Moreover, the gap water resonances at high frequencies tend to cause the dangerous opposed oscillation of two vessels in the sway and yaw modes, whereas FLNG reduces the gap water resonances and relative motions when located on the weather side.展开更多
The dynamic behavior of a two-degree-of-freedom oblique impact system consisted of two pendulums with non-fixed impact positions is investigated. The relations between the restitution coefficient, the friction coeffic...The dynamic behavior of a two-degree-of-freedom oblique impact system consisted of two pendulums with non-fixed impact positions is investigated. The relations between the restitution coefficient, the friction coefficient, as well as other parameters of the system and the states before or after impact, are clarified in this oblique impact process. The existence criterion of single impact periodic-n subharrnonic motions is deduced based on the Poincare map method and the oblique impact relations with non-fixed impact positions. The stability of these subharrnonic periodic motions is analyzed by the Floquet theory, and the formulas to calculate the Flocluet multipliers are given. The validity of this method is shown through numerical simulation. At the same time, the probability distribution of impact positions in this oblique system with nonfixed impact positions is analyzed.展开更多
基金the National Natural Science Foundationof China(No.10572094)the Natural Science Foundation of Shanghai(No.06ZR14050)
文摘The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water is simulated and the hydrodynamic drag,lateral force and yaw moment acting on the hull are obtained by a general purpose computational fluid dynamics(CFD) package FLUENT with shear-stress transport(SST) k—ωturbulence model.The numerical computation is performed at different drift angels and water depths.The numerical results are compared with experimental results,and a good agreement is demonstrated.
基金Supported by National Natural Science Foundations of China(Grant No.51109186)Zhejiang Provincial Natural Science Foundations of China(Grant No.LY16E090004,LY14E090003)the Open Foundation from Key Laboratory of Marine Fishery Equipment and Technology of Zhejiang(MFET201401)
基金This study was supported by the Basic Scientific and Research Fund from National Institute of Natural Hazards,Ministry of Emergency Management of China(former Institute of Crustal Dynamics,China Earthquake Administration)(No.ZDJ2019-25)the National Key Research and Development Program of China(No.2018YFC1504703)。
文摘In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3 D complex sites subjected to obliquely incident SV and P waves. Using this method, we build a fictitious auxiliary model along the normal direction of the boundary of the area of interest, with the model’s localized geological features remaining the same along a vector normal to this boundary. This model is divided into five independent auxiliary models, which are then dynamically analyzed to obtain the equivalent input seismic loads. Unlike traditional methods, in this new technique, the mechanical behavior of the auxiliary model can be nonlinear, and its geometry can be arbitrary. In addition, a detailed description of the steps to calculate the equivalent input seismic loads is given. Numerical examples of incident plane-wave propagation at uniform sites with local features validate the effectiveness of this method. It is also applicable to elastic and non-elastic problems.
基金supported by the China National Scientific and Technology Major Project(2016ZX05028-002-004)
文摘Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane effect of a single-point mooring system normally results in the satisfactory hydrodynamic performance of the side-by-side configuration in head seas. Nevertheless, the changes in wave directions in real sea conditions can significantly influence the relative motions. This article studies the relative motions of the side-by-side system by using the theoretical analysis method and the numerical calculation method. Based on the three-dimensional potential theory modified by artificial damping-lid method, the frequency-domain hydrodynamic coefficients can be improved to calculate the retardation functions for the multi-body problem. An in-house code is then developed to perform the time-domain simulation of two vessels, through which the relative motions are subsequently obtained. A range of oblique waves are chosen for the extensive calculation of relative motions between the two vessels, which are further analyzed in terms of the phase shift of motion responses induced by specific resonant wave patterns. Investigation results show that wave directions have a significant influence on the relative sway, roll, and yaw motions. Under the circumstance that the absolute phase shift between the roll motions of two vessels approaches 180°, stronger relative motions are induced when LNGC is on the weather side.Moreover, the gap water resonances at high frequencies tend to cause the dangerous opposed oscillation of two vessels in the sway and yaw modes, whereas FLNG reduces the gap water resonances and relative motions when located on the weather side.
文摘The dynamic behavior of a two-degree-of-freedom oblique impact system consisted of two pendulums with non-fixed impact positions is investigated. The relations between the restitution coefficient, the friction coefficient, as well as other parameters of the system and the states before or after impact, are clarified in this oblique impact process. The existence criterion of single impact periodic-n subharrnonic motions is deduced based on the Poincare map method and the oblique impact relations with non-fixed impact positions. The stability of these subharrnonic periodic motions is analyzed by the Floquet theory, and the formulas to calculate the Flocluet multipliers are given. The validity of this method is shown through numerical simulation. At the same time, the probability distribution of impact positions in this oblique system with nonfixed impact positions is analyzed.