基于贝叶斯模式平均方法(Bayesian Model Averaging),发展了一个NINO3.4指数的多模式客观权重集合预报方法(简称OBJ)。该方法基于训练期内单个模式的预报结果,用线性回归订正单个预报的偏差,依据模式的预报效果估计单个模式的权重。利用...基于贝叶斯模式平均方法(Bayesian Model Averaging),发展了一个NINO3.4指数的多模式客观权重集合预报方法(简称OBJ)。该方法基于训练期内单个模式的预报结果,用线性回归订正单个预报的偏差,依据模式的预报效果估计单个模式的权重。利用2002年2月—2015年10月美国哥伦比亚大学国际气候与社会研究所(IRI)提供的7个单一模式对NINO3.4指数的预报结果进行OBJ试验,并采用均方根误差对多模式集合平均预报(简称ENS)和OBJ的预报结果进行检验和评估。结果表明,ENS的预报效果优于7个单一模式的预报效果,而OBJ预报效果优于ENS预报效果,其NINO3.4指数的均方根误差比ENS方法降低了4%。将单一模式预报结果按时间划分为训练期和预报期,利用独立样本估计OBJ的参数并进行预报试验,这些试验也表明,OBJ能进一步提高预报精度。展开更多
文摘基于贝叶斯模式平均方法(Bayesian Model Averaging),发展了一个NINO3.4指数的多模式客观权重集合预报方法(简称OBJ)。该方法基于训练期内单个模式的预报结果,用线性回归订正单个预报的偏差,依据模式的预报效果估计单个模式的权重。利用2002年2月—2015年10月美国哥伦比亚大学国际气候与社会研究所(IRI)提供的7个单一模式对NINO3.4指数的预报结果进行OBJ试验,并采用均方根误差对多模式集合平均预报(简称ENS)和OBJ的预报结果进行检验和评估。结果表明,ENS的预报效果优于7个单一模式的预报效果,而OBJ预报效果优于ENS预报效果,其NINO3.4指数的均方根误差比ENS方法降低了4%。将单一模式预报结果按时间划分为训练期和预报期,利用独立样本估计OBJ的参数并进行预报试验,这些试验也表明,OBJ能进一步提高预报精度。