This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.Th...This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masse展开更多
To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization...To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements.展开更多
Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T...Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.2023JBZY024)Beijing Natural Science Foundation (Grant No.9244040)opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology (Grant No.SKLGP2023K015).
文摘This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masse
基金financially supported by the Fundamental Research Funds for the Central Universities (No.FRF-MP20-08)。
文摘To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements.
基金Projects(61001188,1161140319)supported by the National Natural Science Foundation of ChinaProject(2012ZX03001034)supported by the National Science and Technology Major ProjectProject(YETP1202)supported by Beijing Higher Education Young Elite Teacher Project,China
文摘Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.