采摘点的识别与定位是智能采摘的关键技术,也是实现高效、适时、无损采摘的重要保证。针对复杂背景下番茄串采摘点识别定位问题,提出基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法。通过YOLOv4目标检测算法和番茄串与对应果...采摘点的识别与定位是智能采摘的关键技术,也是实现高效、适时、无损采摘的重要保证。针对复杂背景下番茄串采摘点识别定位问题,提出基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法。通过YOLOv4目标检测算法和番茄串与对应果梗的连通关系,快速识别番茄串和可采摘果梗的感兴趣区域(Region of Interest,ROI);融合RGB-D图像中的深度信息和颜色特征识别采摘点,通过深度分割算法、形态学操作、K-means聚类算法和细化算法提取果梗图像,得到采摘点的图像坐标;匹配果梗深度图和彩色图信息,得到采摘点在相机坐标系下的精确坐标;引导机器人完成采摘任务。研究和大量现场试验结果表明,该方法可在复杂近色背景下,实现番茄串采摘点识别定位,单帧图像平均识别时间为54 ms,采摘点识别成功率为93.83%,采摘点深度误差±3 mm,满足自动采摘实时性要求。展开更多
The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focu...The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry.A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree.We perform evaluations on two challenging datasets and one real-world collected dataset,demonstrating the superiority of our method for pose estimation for geometrically complex,occluded,symmetrical objects.We further validate our method by applying it to simulated punctures.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
文摘采摘点的识别与定位是智能采摘的关键技术,也是实现高效、适时、无损采摘的重要保证。针对复杂背景下番茄串采摘点识别定位问题,提出基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法。通过YOLOv4目标检测算法和番茄串与对应果梗的连通关系,快速识别番茄串和可采摘果梗的感兴趣区域(Region of Interest,ROI);融合RGB-D图像中的深度信息和颜色特征识别采摘点,通过深度分割算法、形态学操作、K-means聚类算法和细化算法提取果梗图像,得到采摘点的图像坐标;匹配果梗深度图和彩色图信息,得到采摘点在相机坐标系下的精确坐标;引导机器人完成采摘任务。研究和大量现场试验结果表明,该方法可在复杂近色背景下,实现番茄串采摘点识别定位,单帧图像平均识别时间为54 ms,采摘点识别成功率为93.83%,采摘点深度误差±3 mm,满足自动采摘实时性要求。
基金This work was supported in part by the National Key R&D Program of China(2018AAA0102200)National Natural Science Foundation of China(62132021,62102435,61902419,62002375,62002376)+2 种基金Natural Science Foundation of Hunan Province of China(2021JJ40696)Huxiang Youth Talent Support Program(2021RC3071)NUDT Research Grants(ZK19-30,ZK22-52).
文摘The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry.A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree.We perform evaluations on two challenging datasets and one real-world collected dataset,demonstrating the superiority of our method for pose estimation for geometrically complex,occluded,symmetrical objects.We further validate our method by applying it to simulated punctures.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.