期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CrowdTracker:一种基于移动群智感知的目标跟踪方法 被引量:12
1
作者 景瑶 郭斌 +3 位作者 陈荟慧 岳超刚 王柱 於志文 《计算机研究与发展》 EI CSCD 北大核心 2019年第2期328-337,共10页
面向目标跟踪问题提出一种基于移动群智感知的解决方案CrowdTracker.不同于基于视频监控的目标跟踪方法,通过基于群智的多人协作拍照方式实现对移动目标的轨迹预测和跟踪,其优化目标为在保证准确实时地对目标进行跟踪的同时尽可能地减... 面向目标跟踪问题提出一种基于移动群智感知的解决方案CrowdTracker.不同于基于视频监控的目标跟踪方法,通过基于群智的多人协作拍照方式实现对移动目标的轨迹预测和跟踪,其优化目标为在保证准确实时地对目标进行跟踪的同时尽可能地减少用户激励的成本(假设激励与完成任务的参与者人数和参与者完成任务所移动的距离成正比).为实现该目标,提出了目标移动性预测的方法MPRE和任务分配的方法T-centric,P-centric.T-centric是以任务为中心的参与者选择方法,而P-centric是以人为中心的任务选择方法.MPRE通过分析大量的车辆历史轨迹建立城市里车辆的移动模型以预测目标下一步的位置.在预测的区域内通过T-centric或P-centric方法进行跟踪任务分配.通过一个大规模的真实数据集对移动性预测方法MPRE和2种任务分配算法进行实验评估,实验结果表明:CrowdTracker能有效地在实现目标实时跟踪的同时降低激励成本. 展开更多
关键词 移动群智感知 拍照 目标跟踪 目标移动性预测 任务分配
下载PDF
一种基于预测的无线传感器网络目标跟踪技术 被引量:4
2
作者 杨海波 陈友荣 《计算机仿真》 CSCD 2008年第8期118-122,共5页
现有的各种目标跟踪技术未能综合考虑不同目标的运动特征,提出了一种新的基于预测的目标跟踪技术,以减少监控节点数目。根据目标运动的当前测量数据或者历史记录确定目标的运动特征,然后结合目标的当前位置、速度、运动方向等信息预测... 现有的各种目标跟踪技术未能综合考虑不同目标的运动特征,提出了一种新的基于预测的目标跟踪技术,以减少监控节点数目。根据目标运动的当前测量数据或者历史记录确定目标的运动特征,然后结合目标的当前位置、速度、运动方向等信息预测目标的未来位置;当目标位置预测失败时,网络根据目标的运动历史记录和先验知识逐级启动预测失败恢复过程。仿真结果显示在给定节点与基站分布、节点感知范围和目标运动特性等参数的前提下,比PES方法的目标丢失率大大降低,网络寿命有较大增加,表明采用在确保网络可靠跟踪目标的前提下,减少了被唤醒传感器节点的数目,从而降低了节点的能耗,延长了目标跟踪传感器网络的寿命。 展开更多
关键词 无线传感器网络 目标跟踪 运动预测
下载PDF
Methods and Means for Small Dynamic Objects Recognition and Tracking
3
作者 Dmytro Kushnir 《Computers, Materials & Continua》 SCIE EI 2022年第11期3649-3665,共17页
A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects... A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The res 展开更多
关键词 object detection artificial intelligence object tracking object counting small movable objects ants tracking ants recognition YOLO_AR Yolov4 Hungarian algorithm k-d tree algorithm MOT benchmark image labeling movement prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部