A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex...A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was dev展开更多
This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo- pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cav...This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo- pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cavitating turbulent flows and the achievements with regard to the complicated flow features revealed by using advanced optical techniques as well as cavitation simulation are introduced so as to make a better understanding of the cavitating flow mechanism for hydraulic machinery. Since cavitation instabilities are also vital issue and rather harmful for the operation safety of hydro machines, we present the 1-D analysis method, which is identified to be very useful for engineering applications regarding the cavitating flows in inducers, turbine draft tubes, etc. Though both cavitation and hydraulic machinery are extensively discussed in literatures, one should be aware that a few problems still remains and are open for solution, such as the comprehensive understanding of cavitating turbulent flows especially inside hydro turbines, the unneglectable discrepancies between the numerical and experimental data, etc.. To further promote the study of cavitation in hydraulic machinery, some advanced tooics such as a Density-Based solver suitable for highly comoressible cavitating turbulent flows, a virtual cavitation tunnel, etc. are addressed for the future works.展开更多
In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility a...In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) axe used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement axe reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study axe that sea fog forms in response to relatively persistent southerly waxm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.展开更多
Different versions of a new nine-layer general circulation model which is rhomboidally truncated at zonal wavenumber 15(L9R15)are introduced in this paper.On using the observed global monthly sea surfaCe temperature(S...Different versions of a new nine-layer general circulation model which is rhomboidally truncated at zonal wavenumber 15(L9R15)are introduced in this paper.On using the observed global monthly sea surfaCe temperature(SST)and sea ice(SI)data from 1979 to 1988 offered by the internahonal Atmospheric Model Iute-comparison Program(AMIP),these different model versions were integrated for the ten-year AMIP period. Results show that the model iscapable of simulating the basic states of the atmosphere and its interannual variability,and in performing reasonablesensitivity experiments.展开更多
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur...The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.展开更多
The interaction of flow through the inducer and impeller of an axial-flow pump equipped with an inducer has significant effect on its performance. This article presents a recent numerical investigation on this topic. ...The interaction of flow through the inducer and impeller of an axial-flow pump equipped with an inducer has significant effect on its performance. This article presents a recent numerical investigation on this topic. The studied pump has an inducer with 3 blades mounted on a conical hub and a 6-blade impeller. The blade angle of the impeller is adjustable to generate different relative circumferential angles between the inducer blade trailing edge and the impeller blade leading edge. A computational fluid dynamics code was used to investigate the flow characteristics and performance of the axial-flow pump. For turbulence closure, the RNG k-ε model was applied with an unstructured grid system. The rotor-stator interaction was treated with a Multiple Reference Frame (MRF) strategy. Computations were performed in different cases: 7 different relative circumferential angles ( Δθ ) between the inducer blade trailing edge and the impeller blade leading edge, and 3 different axial gaps (G) between the inducer and the impeller. The variation of the hydraulic loss in the rotator was obtained by changing Δθ . The numerical results show that the pressure generated is minimum in the case of ( G = 3%D), which indicates that the interference between inducer and impeller is strong if the axial gap is small. The pump performances were predicted and compared to the experimental measurements. Recommendations for future modifications and improvements to the pump design were also given.展开更多
The genesis of Indo-Sinian granitic plutons with peraluminous and potassium-rich affinities from Hunan Province, China has been investigated by numerical modeling using the numerical code FLAC. On the basis of the reg...The genesis of Indo-Sinian granitic plutons with peraluminous and potassium-rich affinities from Hunan Province, China has been investigated by numerical modeling using the numerical code FLAC. On the basis of the regional geological evolution in South China, we employed a realistic numerical model in an attempt to unravel the influences of basaltic underplating and tectonic crustal thickening on the crustal anatexis. Heat production derived from basaltic underplating (e.g. ca. 220 Ma gabbro xenoliths) can result in dehydration melting of fluid-bearing minerals in crustal rocks such as gneisses and metapelites, but its effect is limited in a relatively short time span (5-15 Ma) and on a small scale. Accordingly, it is very difficult for basaltic underplating to generate the large-scale Indo-Sinian granitic bathliths unless voluminous mafic magmas had been underplated at the lower/middle crust during this period. Alternatively, crustal thickening induced by tectonic compression can also lead to geothermal elevation, during which the temperature at the boundary between lower and middle crusts can be up to or greater than 700°C, triggering dehydration melting of muscovite in gneiss and metapelite. The proportion of melts from muscovite-induced dehydration melting is close to critical melt percentage (?20%) once the thickening factor reaches 1.3. These melts can be effectively transferred to the crust-level magma chamber and form large-scale granitic batholiths. In combination with the Indo-Sinian convergent tectonic setting in South China as well as sparse outcrops of contemporary mafic igneous rocks, we consider that tectonic crustal thickening is likely to be the predominant factor controlling the formation of the Indo-Sinian peraluminous and potassium-rich granitoids in Hunan Province.展开更多
After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the...After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the 3D VSAB equations in the normal and tangential directions are derived based on the elastic wave motion theory. Secondly, a numerical simulation technique of wave motion equations along with the VSAB condition in the time domain is studied. Finally, numerical examples of some classical elastic wave motion problems are presented and the results are compared with the associated theoretical solutions, demonstrating that high precision and adequate stability can be achieved by using the proposed 3D VSAB. The proposed 3D VSAB can be conveniently incorporated in the general finite element program, which is commonly used to study dynamic soil-structure interaction problems.展开更多
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ...The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.展开更多
The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock engineering. At low confining pressures, tensile fracturing initiates in samples at 40%-60% of the uniaxial compr...The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock engineering. At low confining pressures, tensile fracturing initiates in samples at 40%-60% of the uniaxial compressive strength and as loading continues, and these tensile fractures increase in density, ultimately coalescing and leading to strain localization and macro-scale shear failure of the samples. The Griffith theory of brittle failure provides a simplified model and a useful basis for discussion of this process. The Hoek-Brown failure criterion provides an acceptable estimate of the peak strength for shear failure but a cutoff has been added for tensile conditions. However, neither of these criteria adequately explains the progressive coalition of tensile cracks and the final shearing of the specimens at higher confining stresses. Grain-based numerical models, in which the grain size distributions as well as the physical properties of the component grains of the rock are incorporated, have proved to be very useful in studying these more complex fracture processes.展开更多
The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equati...The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions.展开更多
The observation at the Chongxi gauging station indicated the salinity of saltwater spilling over from the North Branch to the South Branch increased abnormally from November 10 to 12 in 2009 (during neap tide) and fro...The observation at the Chongxi gauging station indicated the salinity of saltwater spilling over from the North Branch to the South Branch increased abnormally from November 10 to 12 in 2009 (during neap tide) and from February 11 to 12 in 2010 (during moderate tide).We found for the first time that the strong northerly wind was responsible for the above abnormal salinity increase.Previous studies indicated that the saltwater intrusion in the Yangtze Estuary is influenced mainly by the river discharge,the tide,and the wind stress,but the impacts of variations of wind speed and direction on it have not been investigated.In this study the impacts of wind stress on the saltwater intrusion were numerically simulated and the associated mechanisms were analyzed.The model results were consistent with the observed data obtained at six gauging stations during February and March in 2007 and four gauging stations in March 2008,and the abnormal salinity risings were well captured.Meanwhile,if the wind speed is reduced by half,the salinity there will be significantly decreased.Driven by the monthly mean river discharge of 11000 m 3 /s and northerly wind of 5 m/s from January to February,the model simulated the temporal and spatial variation of saltwater intrusion.The wind-driven circulation,as well as the net water and salt fluxes from the North Branch into the South Branch,was calculated and analyzed in the cases of different wind speeds and directions.The results indicated that the intensity of the saltwater intrusion in the Yangtze Estuary is significantly influenced by the wind speeds and directions.展开更多
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece...Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.展开更多
High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport...High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized by finite-volume approximations.Structured grid system was constructed in the computational domain,which has O-type grids near the blade surfaces and H/J-type grids in other regions.The numerical results were validated with experimental data for the heads and hydraulic efficiencies at different flow coefficients.The hydraulic efficiency at the design flow coefficient was evaluated with variation of the geometric variables,i.e.,the area of the discharge and length of the vane in the diffuser.The result has shown that the hydraulic efficiency of a mixed-flow pump at the design condition is improved by the modification of the geometry.展开更多
In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This r... In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.展开更多
In this paper, we incorporate fuzzy mathematics approach into the Eulerian method to simulate three dimensional multi-material interfaces. In particular, we propose a fuzzy interface treatment for describing interface...In this paper, we incorporate fuzzy mathematics approach into the Eulerian method to simulate three dimensional multi-material interfaces. In particular, we propose a fuzzy interface treatment for describing interfaces, designing transport plans, and computing transport quantities. Using a set of three-dimensional inviscid isothermal elastic-plastic hydrodynamic equations, we simulate shaped charge jet in different filled dynamite structures. Strain and stress have been under consideration in simulations. Numerical results demonstrate that the fuzzy interface treatment is correct and efficient for three-dimensional multi-material problems.展开更多
Intergovernmental Panel on Climate Change(IPCC)in 2001 reported that the Earth air temperature would rise by 1.4-5.8℃and 2.5℃on average by the year 2100.China re-gional climate model results also showed that the air...Intergovernmental Panel on Climate Change(IPCC)in 2001 reported that the Earth air temperature would rise by 1.4-5.8℃and 2.5℃on average by the year 2100.China re-gional climate model results also showed that the air temperature on the Qinghai-Tibet Plateau(QTP)would increase by 2.2-2.6℃in the next 50 years.A numerical permafrost model was developed to predict the changes of permafrost distribution on the QTP over the next 50 and 100 years under the two climatic warming scenarios,i.e.0.02℃/a,the lower value of IPCC’s estima-tion,and 0.052℃/a,the higher value predicted by Qin et al.Simulation results show that(i)in the case of 0.02℃/a air-temperature rise,permafrost area on the QTP will shrink about 8.8%in the next 50 years,and high temperature permafrost with mean annual ground temperature(MAGT)higher than?0.11℃may turn into seasonal frozen soils.In the next 100 years,perma-frost with MAGT higher than?0.5℃will disappear and the permafrost area will shrink up to 13.4%.(ii)In the case of 0.052℃/a air-temperature rise,permafrost area on the QTP will reduce about 13.5%after 50 years.More remarkable degradation will take place after 100 years,and permafrost area will reduce about 46%.Permafrost with MAGT higher than?2℃will turn into seasonal frozen soils and even unfrozen soils.展开更多
文摘A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was dev
基金Project supported by the National Natural Science Foun-dation of China(Grant No.51536008)the Beijing Key Laboratory Development Project(Grant No.Z151100001615006)
文摘This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo- pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cavitating turbulent flows and the achievements with regard to the complicated flow features revealed by using advanced optical techniques as well as cavitation simulation are introduced so as to make a better understanding of the cavitating flow mechanism for hydraulic machinery. Since cavitation instabilities are also vital issue and rather harmful for the operation safety of hydro machines, we present the 1-D analysis method, which is identified to be very useful for engineering applications regarding the cavitating flows in inducers, turbine draft tubes, etc. Though both cavitation and hydraulic machinery are extensively discussed in literatures, one should be aware that a few problems still remains and are open for solution, such as the comprehensive understanding of cavitating turbulent flows especially inside hydro turbines, the unneglectable discrepancies between the numerical and experimental data, etc.. To further promote the study of cavitation in hydraulic machinery, some advanced tooics such as a Density-Based solver suitable for highly comoressible cavitating turbulent flows, a virtual cavitation tunnel, etc. are addressed for the future works.
文摘In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) axe used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement axe reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study axe that sea fog forms in response to relatively persistent southerly waxm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.
文摘Different versions of a new nine-layer general circulation model which is rhomboidally truncated at zonal wavenumber 15(L9R15)are introduced in this paper.On using the observed global monthly sea surfaCe temperature(SST)and sea ice(SI)data from 1979 to 1988 offered by the internahonal Atmospheric Model Iute-comparison Program(AMIP),these different model versions were integrated for the ten-year AMIP period. Results show that the model iscapable of simulating the basic states of the atmosphere and its interannual variability,and in performing reasonablesensitivity experiments.
文摘The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.
基金the National Nature Science Foundation of China (Grant No. 90510007) Beijing Nature Science Foundation of China (Grant No. 3071002)the National Key Technology R and D Program (Grant No. 2006BAD11B07).
文摘The interaction of flow through the inducer and impeller of an axial-flow pump equipped with an inducer has significant effect on its performance. This article presents a recent numerical investigation on this topic. The studied pump has an inducer with 3 blades mounted on a conical hub and a 6-blade impeller. The blade angle of the impeller is adjustable to generate different relative circumferential angles between the inducer blade trailing edge and the impeller blade leading edge. A computational fluid dynamics code was used to investigate the flow characteristics and performance of the axial-flow pump. For turbulence closure, the RNG k-ε model was applied with an unstructured grid system. The rotor-stator interaction was treated with a Multiple Reference Frame (MRF) strategy. Computations were performed in different cases: 7 different relative circumferential angles ( Δθ ) between the inducer blade trailing edge and the impeller blade leading edge, and 3 different axial gaps (G) between the inducer and the impeller. The variation of the hydraulic loss in the rotator was obtained by changing Δθ . The numerical results show that the pressure generated is minimum in the case of ( G = 3%D), which indicates that the interference between inducer and impeller is strong if the axial gap is small. The pump performances were predicted and compared to the experimental measurements. Recommendations for future modifications and improvements to the pump design were also given.
基金This work was supported by the Chinese Academy of Sciences (Gram Nos. KZCX2-102 and KZCX3-113)the Ministry of Science and Technology of China (Grant No. G1999043209)the National Natural Science Foundation of China (Grant No. 40002007)
文摘The genesis of Indo-Sinian granitic plutons with peraluminous and potassium-rich affinities from Hunan Province, China has been investigated by numerical modeling using the numerical code FLAC. On the basis of the regional geological evolution in South China, we employed a realistic numerical model in an attempt to unravel the influences of basaltic underplating and tectonic crustal thickening on the crustal anatexis. Heat production derived from basaltic underplating (e.g. ca. 220 Ma gabbro xenoliths) can result in dehydration melting of fluid-bearing minerals in crustal rocks such as gneisses and metapelites, but its effect is limited in a relatively short time span (5-15 Ma) and on a small scale. Accordingly, it is very difficult for basaltic underplating to generate the large-scale Indo-Sinian granitic bathliths unless voluminous mafic magmas had been underplated at the lower/middle crust during this period. Alternatively, crustal thickening induced by tectonic compression can also lead to geothermal elevation, during which the temperature at the boundary between lower and middle crusts can be up to or greater than 700°C, triggering dehydration melting of muscovite in gneiss and metapelite. The proportion of melts from muscovite-induced dehydration melting is close to critical melt percentage (?20%) once the thickening factor reaches 1.3. These melts can be effectively transferred to the crust-level magma chamber and form large-scale granitic batholiths. In combination with the Indo-Sinian convergent tectonic setting in South China as well as sparse outcrops of contemporary mafic igneous rocks, we consider that tectonic crustal thickening is likely to be the predominant factor controlling the formation of the Indo-Sinian peraluminous and potassium-rich granitoids in Hunan Province.
基金National Natural Science Foundation of ChinaUnder Grant No.50478014Special Funds for Major State Basic Research Project Under Grant No.2002CB412706Research Funds from National Civil Defense Oficce of Chinafor the Tenth Five-year Plan。
文摘After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the 3D VSAB equations in the normal and tangential directions are derived based on the elastic wave motion theory. Secondly, a numerical simulation technique of wave motion equations along with the VSAB condition in the time domain is studied. Finally, numerical examples of some classical elastic wave motion problems are presented and the results are compared with the associated theoretical solutions, demonstrating that high precision and adequate stability can be achieved by using the proposed 3D VSAB. The proposed 3D VSAB can be conveniently incorporated in the general finite element program, which is commonly used to study dynamic soil-structure interaction problems.
基金supported by National Natural Science Foundation of China (Grant No. 21076198)Zhejiang Provincial Natural Science Foundation of China (Granted No. R1100530)National Basic Research Program of China (973 Program,Grant No. 2009CB724303)
文摘The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
文摘The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock engineering. At low confining pressures, tensile fracturing initiates in samples at 40%-60% of the uniaxial compressive strength and as loading continues, and these tensile fractures increase in density, ultimately coalescing and leading to strain localization and macro-scale shear failure of the samples. The Griffith theory of brittle failure provides a simplified model and a useful basis for discussion of this process. The Hoek-Brown failure criterion provides an acceptable estimate of the peak strength for shear failure but a cutoff has been added for tensile conditions. However, neither of these criteria adequately explains the progressive coalition of tensile cracks and the final shearing of the specimens at higher confining stresses. Grain-based numerical models, in which the grain size distributions as well as the physical properties of the component grains of the rock are incorporated, have proved to be very useful in studying these more complex fracture processes.
文摘The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions.
基金supported by National Natural Science Foundation of China(Grant No. 40976056)National Basic Science Research Program of Global Change Research (Grant No. 2010CB951201)+1 种基金Marine SpecialProgram for Scientific Research on Public Causes (Grant No. 201005019)National Natural Science Foundation of China (Grant No. 40806034)
文摘The observation at the Chongxi gauging station indicated the salinity of saltwater spilling over from the North Branch to the South Branch increased abnormally from November 10 to 12 in 2009 (during neap tide) and from February 11 to 12 in 2010 (during moderate tide).We found for the first time that the strong northerly wind was responsible for the above abnormal salinity increase.Previous studies indicated that the saltwater intrusion in the Yangtze Estuary is influenced mainly by the river discharge,the tide,and the wind stress,but the impacts of variations of wind speed and direction on it have not been investigated.In this study the impacts of wind stress on the saltwater intrusion were numerically simulated and the associated mechanisms were analyzed.The model results were consistent with the observed data obtained at six gauging stations during February and March in 2007 and four gauging stations in March 2008,and the abnormal salinity risings were well captured.Meanwhile,if the wind speed is reduced by half,the salinity there will be significantly decreased.Driven by the monthly mean river discharge of 11000 m 3 /s and northerly wind of 5 m/s from January to February,the model simulated the temporal and spatial variation of saltwater intrusion.The wind-driven circulation,as well as the net water and salt fluxes from the North Branch into the South Branch,was calculated and analyzed in the cases of different wind speeds and directions.The results indicated that the intensity of the saltwater intrusion in the Yangtze Estuary is significantly influenced by the wind speeds and directions.
文摘Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.
基金supported by the Korea Institute of Industrial Technology Evaluation and Planning (ITEP) grant funded by the Ministry of Knowledge Economy (Grant No.10031771)
文摘High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized by finite-volume approximations.Structured grid system was constructed in the computational domain,which has O-type grids near the blade surfaces and H/J-type grids in other regions.The numerical results were validated with experimental data for the heads and hydraulic efficiencies at different flow coefficients.The hydraulic efficiency at the design flow coefficient was evaluated with variation of the geometric variables,i.e.,the area of the discharge and length of the vane in the diffuser.The result has shown that the hydraulic efficiency of a mixed-flow pump at the design condition is improved by the modification of the geometry.
文摘 In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.
基金the National Natural Science Foundation of China (Grant No.10272023).
文摘In this paper, we incorporate fuzzy mathematics approach into the Eulerian method to simulate three dimensional multi-material interfaces. In particular, we propose a fuzzy interface treatment for describing interfaces, designing transport plans, and computing transport quantities. Using a set of three-dimensional inviscid isothermal elastic-plastic hydrodynamic equations, we simulate shaped charge jet in different filled dynamite structures. Strain and stress have been under consideration in simulations. Numerical results demonstrate that the fuzzy interface treatment is correct and efficient for three-dimensional multi-material problems.
基金the Knowledge Innovation Project of Chinese Academy of Sciences(CAS)(Grant No.KZCX1-SW-04)the Knowledge Innovation Project of CAREERI,CAS(Grant No.CACX200009)the Project of Ministry of Science and Technology of China(Grant No.G1998040812).
文摘Intergovernmental Panel on Climate Change(IPCC)in 2001 reported that the Earth air temperature would rise by 1.4-5.8℃and 2.5℃on average by the year 2100.China re-gional climate model results also showed that the air temperature on the Qinghai-Tibet Plateau(QTP)would increase by 2.2-2.6℃in the next 50 years.A numerical permafrost model was developed to predict the changes of permafrost distribution on the QTP over the next 50 and 100 years under the two climatic warming scenarios,i.e.0.02℃/a,the lower value of IPCC’s estima-tion,and 0.052℃/a,the higher value predicted by Qin et al.Simulation results show that(i)in the case of 0.02℃/a air-temperature rise,permafrost area on the QTP will shrink about 8.8%in the next 50 years,and high temperature permafrost with mean annual ground temperature(MAGT)higher than?0.11℃may turn into seasonal frozen soils.In the next 100 years,perma-frost with MAGT higher than?0.5℃will disappear and the permafrost area will shrink up to 13.4%.(ii)In the case of 0.052℃/a air-temperature rise,permafrost area on the QTP will reduce about 13.5%after 50 years.More remarkable degradation will take place after 100 years,and permafrost area will reduce about 46%.Permafrost with MAGT higher than?2℃will turn into seasonal frozen soils and even unfrozen soils.