The bulk parameters characterizing the energy of symmetric nuclear matter and the symmetry energy defined at normal nuclear density ρ0 provide important information on the equation of state (EOS) of isospin asymmetri...The bulk parameters characterizing the energy of symmetric nuclear matter and the symmetry energy defined at normal nuclear density ρ0 provide important information on the equation of state (EOS) of isospin asymmetric nuclear matter. While significant progress has been made in determining some lower order bulk characteristic parameters, such as the energy E0(ρ0) and incompress ibility K0 of symmetric nuclear matter as well as the symmetry energy Esym(ρ0) and its slope parameter L, yet the higher order bulk characteristic parameters are still poorly known. Here, we analyze the correlations between the lower and higher order bulk char acteristic parameters within the framework of Skyrme Hartree-Fock energy density functional and then estimate the values of some higher order bulk characteristic parameters. In particular, we obtain J0 = (-355±95) MeV and I0 = (1473±680) MeV for the third order and fourth-order derivative parameters of symmetric nuclear matter at ρ0 and Ksym = (-100 ± 165) MeV, Jsym = (224 ± 385) MeV, Isym = (-1309 ± 2025) MeV for the curvature parameter, third-order and fourth-order derivative parameters of the symmetry energy at ρ0, using the empirical constraints on E0(ρ0), K0, Esym(ρ0), L, and the isoscalar and isovector nucleon effective masses. Furthermore, our results indicate that the three parameters E0(ρ0), K0, and J0 can reasonably characterize the EOS of symmetric nuclear matter up to 2ρ0 while the symmetry energy up to 2ρ0 can be well described by Esym(ρ0), L, and Ksym.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10975097)Shanghai Rising-Star Program (Grant No.11QH1401100)the National Basic Research Program of China (GrantNo. 2007CB815004)
文摘The bulk parameters characterizing the energy of symmetric nuclear matter and the symmetry energy defined at normal nuclear density ρ0 provide important information on the equation of state (EOS) of isospin asymmetric nuclear matter. While significant progress has been made in determining some lower order bulk characteristic parameters, such as the energy E0(ρ0) and incompress ibility K0 of symmetric nuclear matter as well as the symmetry energy Esym(ρ0) and its slope parameter L, yet the higher order bulk characteristic parameters are still poorly known. Here, we analyze the correlations between the lower and higher order bulk char acteristic parameters within the framework of Skyrme Hartree-Fock energy density functional and then estimate the values of some higher order bulk characteristic parameters. In particular, we obtain J0 = (-355±95) MeV and I0 = (1473±680) MeV for the third order and fourth-order derivative parameters of symmetric nuclear matter at ρ0 and Ksym = (-100 ± 165) MeV, Jsym = (224 ± 385) MeV, Isym = (-1309 ± 2025) MeV for the curvature parameter, third-order and fourth-order derivative parameters of the symmetry energy at ρ0, using the empirical constraints on E0(ρ0), K0, Esym(ρ0), L, and the isoscalar and isovector nucleon effective masses. Furthermore, our results indicate that the three parameters E0(ρ0), K0, and J0 can reasonably characterize the EOS of symmetric nuclear matter up to 2ρ0 while the symmetry energy up to 2ρ0 can be well described by Esym(ρ0), L, and Ksym.