本文旨在讨论核能5.0(Nuclear Energy 5.0)的基本概念、体系架构和关键平台技术等问题.首先讨论了核能5.0出现的新智能时代基础,阐述了虚拟数字工业崛起的技术背景.详细叙述了核电工业新形态与体系结构,即平行核能的定义、意义、研究内...本文旨在讨论核能5.0(Nuclear Energy 5.0)的基本概念、体系架构和关键平台技术等问题.首先讨论了核能5.0出现的新智能时代基础,阐述了虚拟数字工业崛起的技术背景.详细叙述了核电工业新形态与体系结构,即平行核能的定义、意义、研究内容、体系架构以及应用领域.接下来讨论了核能5.0中新一代核心技术,包括核能物联网、知识自动化、发展性人工智能、大规模协同演进技术、核能区块链等.最后讨论了核能5.0中在核电系统的具体应用场景与案例,重点是核电工控系统安全评估与核电站数字化仪控系统.展开更多
This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There ar...This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There are different limitations in the use of every source of electric energy but in consideration of minimum environmental impact, exclusively inherently low greenhouse gas (GHG) emission, and also, high life time with maximum power production efficiency, nuclear would be the best choice. From this study it was found that several difficulties involved in the ADS based energy production, more specifically, difficulties regarding the target parameters, coding system, waste management, etc. Hence suggestions from this study points out that if it is possible to ensure more energy efficient production of enriched uranium, improved nuclear fuels and reactors that allow greater utilization, extended life times for nuclear power plants (NPPs) that reduce the need to build new facilities, improved coding system capable of minimizing the discrepancy between theoretical and experimental calculation of spallation products, improved data library with sufficiently available high energy nuclear data to perform a better coding analysis, and finally, considering the environmental safety if the disposal of the radioactive wastes could manage more effectively, nuclear energy would then play a significant role in minimizing future energy crisis worldwide as well as to save our loving green earth.展开更多
文摘本文旨在讨论核能5.0(Nuclear Energy 5.0)的基本概念、体系架构和关键平台技术等问题.首先讨论了核能5.0出现的新智能时代基础,阐述了虚拟数字工业崛起的技术背景.详细叙述了核电工业新形态与体系结构,即平行核能的定义、意义、研究内容、体系架构以及应用领域.接下来讨论了核能5.0中新一代核心技术,包括核能物联网、知识自动化、发展性人工智能、大规模协同演进技术、核能区块链等.最后讨论了核能5.0中在核电系统的具体应用场景与案例,重点是核电工控系统安全评估与核电站数字化仪控系统.
文摘This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There are different limitations in the use of every source of electric energy but in consideration of minimum environmental impact, exclusively inherently low greenhouse gas (GHG) emission, and also, high life time with maximum power production efficiency, nuclear would be the best choice. From this study it was found that several difficulties involved in the ADS based energy production, more specifically, difficulties regarding the target parameters, coding system, waste management, etc. Hence suggestions from this study points out that if it is possible to ensure more energy efficient production of enriched uranium, improved nuclear fuels and reactors that allow greater utilization, extended life times for nuclear power plants (NPPs) that reduce the need to build new facilities, improved coding system capable of minimizing the discrepancy between theoretical and experimental calculation of spallation products, improved data library with sufficiently available high energy nuclear data to perform a better coding analysis, and finally, considering the environmental safety if the disposal of the radioactive wastes could manage more effectively, nuclear energy would then play a significant role in minimizing future energy crisis worldwide as well as to save our loving green earth.