This paper investigates the oscillatory and nonoscillatory behaviour of solu- tions of a class of third order nonlinear differential equations. Results extend and improve some known results in the literature.
This paper deals with oscillatory /nonoscillatory behaviour of solutions of thirdorder nonlinear differential equations of the formwhere a,b,c E C([a,oo),R) such that a(t) does not change sign, b(t) 5 0, c(t) > 0,f...This paper deals with oscillatory /nonoscillatory behaviour of solutions of thirdorder nonlinear differential equations of the formwhere a,b,c E C([a,oo),R) such that a(t) does not change sign, b(t) 5 0, c(t) > 0,f∈C(R, R) such that (f(y)/y) ≥ β > 0 for y ≠ 0 and γ > 0 is a quotient of odd integers.It has been shown, under certain conditions on coefficient functions, that a solution of (1)and (2) which Las a zero is oscillatory and the nonoscillatory solutions of these equationstend to zero as t → ∞. The motivation for this work came from the observation that thewhere al b, c are constants such that b≤ 0, c > 0, has an oscillatory solution if and only ifand all nonoscillatory solutions of (3) tend to zero if and only if the equation has anoscillatory solution.展开更多
利用Krasnoselskii不动点定理,得到了一阶非线性中立型方程组[x_i(t)+sum from j=1 to n c_(ij)x_j(t-σ)]′+f_i(t,x_l(g_(il)(t)),…,x_n(g_(in)(t)))=0,i=1,2,…,n存在趋于具均为正(负)分量的常向量的非振动解的充分必要条件.
考虑变系数高阶中立型微分方程(NDDE)d^n/(dt^n)[y(t)+p(t)y(t-τ)]+sum from n=1 to ∞q^i(t)y(t-σ_i)=0 (1)其中p(t)、g_i(t)都是区间[T,∞)上连续的实值函数.p(t)有界,q_i(t)≥0(i=1,2,···,m)且至少有一个q_i(t)最...考虑变系数高阶中立型微分方程(NDDE)d^n/(dt^n)[y(t)+p(t)y(t-τ)]+sum from n=1 to ∞q^i(t)y(t-σ_i)=0 (1)其中p(t)、g_i(t)都是区间[T,∞)上连续的实值函数.p(t)有界,q_i(t)≥0(i=1,2,···,m)且至少有一个q_i(t)最终大于某一任意小的正数.τ≥0,σ_i≥0.m≥1,n≥1均为正整数. 本文研究了方程(1)在p(t)≥一1及p(t)≤-1等情况下解的渐近性和振动性,获得了一系列使解振动的充分条件.特别,p(t)有时可以是变号函数.展开更多
The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has p...The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.展开更多
By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay di...By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay difference equations with matrix coefficients.展开更多
In this paper necessary and sufficient conditions for the existence of nonoscillatory solutions of a class of higher order nonlinear functional differential systems are obtained.
In this paper, we establish a few existence results of nonoscillatory solutions to second-order nonlinear neutral delay differential equations, construct several Manntype iterative approximation schemes for these nono...In this paper, we establish a few existence results of nonoscillatory solutions to second-order nonlinear neutral delay differential equations, construct several Manntype iterative approximation schemes for these nonoscillatory solutions, and give some error estimates between the approximate solutions and the nonoscillatory solutions. And finally we give an example to illustrate our results.展开更多
文摘This paper investigates the oscillatory and nonoscillatory behaviour of solu- tions of a class of third order nonlinear differential equations. Results extend and improve some known results in the literature.
文摘This paper deals with oscillatory /nonoscillatory behaviour of solutions of thirdorder nonlinear differential equations of the formwhere a,b,c E C([a,oo),R) such that a(t) does not change sign, b(t) 5 0, c(t) > 0,f∈C(R, R) such that (f(y)/y) ≥ β > 0 for y ≠ 0 and γ > 0 is a quotient of odd integers.It has been shown, under certain conditions on coefficient functions, that a solution of (1)and (2) which Las a zero is oscillatory and the nonoscillatory solutions of these equationstend to zero as t → ∞. The motivation for this work came from the observation that thewhere al b, c are constants such that b≤ 0, c > 0, has an oscillatory solution if and only ifand all nonoscillatory solutions of (3) tend to zero if and only if the equation has anoscillatory solution.
文摘利用Krasnoselskii不动点定理,得到了一阶非线性中立型方程组[x_i(t)+sum from j=1 to n c_(ij)x_j(t-σ)]′+f_i(t,x_l(g_(il)(t)),…,x_n(g_(in)(t)))=0,i=1,2,…,n存在趋于具均为正(负)分量的常向量的非振动解的充分必要条件.
基金This project is supported by the State Natural Science Fund of China
文摘考虑变系数高阶中立型微分方程(NDDE)d^n/(dt^n)[y(t)+p(t)y(t-τ)]+sum from n=1 to ∞q^i(t)y(t-σ_i)=0 (1)其中p(t)、g_i(t)都是区间[T,∞)上连续的实值函数.p(t)有界,q_i(t)≥0(i=1,2,···,m)且至少有一个q_i(t)最终大于某一任意小的正数.τ≥0,σ_i≥0.m≥1,n≥1均为正整数. 本文研究了方程(1)在p(t)≥一1及p(t)≤-1等情况下解的渐近性和振动性,获得了一系列使解振动的充分条件.特别,p(t)有时可以是变号函数.
文摘The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.
基金This work is supported by the National Natural Sciences Foundation of China under Grant 10361006the Natural Sciences Foundation of Yunnan Province under Grant 2003A0001MYouth Natural Sciences Foundation of Yunnan University under Grant 2003Q032C and Sciences Foundation of Yunnan Educational Community under Grant 04Y239A.
文摘By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay difference equations with matrix coefficients.
文摘In this paper necessary and sufficient conditions for the existence of nonoscillatory solutions of a class of higher order nonlinear functional differential systems are obtained.
基金supported by the National Natural Science Foundation of China(No.10771001)Doctoral Fund of Ministry of Education of China(No.20093401110001)Nature Science Foundation of Anhui Province(No.KJ2013B276)
文摘In this paper, we establish a few existence results of nonoscillatory solutions to second-order nonlinear neutral delay differential equations, construct several Manntype iterative approximation schemes for these nonoscillatory solutions, and give some error estimates between the approximate solutions and the nonoscillatory solutions. And finally we give an example to illustrate our results.