A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exteri...A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exterior region,the second-order velocity potential is expressed in terms of‘locked-wave’and‘free-wave’ components,both are solved using Fourier and eigenfunction expansions.The re- sulting‘locked wave’potential is expressed by one-dimensional Green's integrals with oscillating integrands.In order to increase computational efficiency,the far-field part of the integrals are carried out analytically.Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions.Based on the present approach,the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates the incident wave spectrum with second-order forcing spectrum on the column.The sum-frequency QTFs for a TLP column are present,which are compared for some frequency pairs with those from a fully numerical procedure.Satisfactory agreement has been obtained.QTF spectra for a case study TLP column,generated using the semi-analytical solution are presented.Also given are the results for nonlinear wave field around the column.展开更多
To solve the numerical divergence problem of the direct time domain Green function method for the motion simulation of floating bodies with large flare, a time domain hybrid Rankine-Green boundary element method is pr...To solve the numerical divergence problem of the direct time domain Green function method for the motion simulation of floating bodies with large flare, a time domain hybrid Rankine-Green boundary element method is proposed. In this numerical method, the fluid domain is decomposed by an imaginary control surface, at which the continuous condition should be satisfied. Then the Rankine Green function is adopted in the inner domain. The transient free surface Green function is applied in the outer domain, which is used to find the relationship between the velocity potential and its normal derivative for the inner domain. Besides, the velocity potential at the mean free surface between body surface and control surface is directly solved by the integration scheme. The wave exciting force is computed through the convolution integration with wave elevation, by introducing the impulse response function. Additionally, the nonlinear Froude-Krylov force and hydrostatic force, which is computed under the instantaneous incident wave free surface, are taken into account by the direct pressure integration scheme. The corresponding numerical computer code is developed and first used to compute the hydrodynamic coefficients of the hemisphere, as well as the time history of a ship with large flare; good agreement is obtained with the analytical solutions as well as the available numerical results. Then the hydrodynamic properties of a FPSO are studied. The hydrodynamic coefficients agree well with the results computed by the frequency method; the influence of the time interval and the truncated time is investigated in detail.展开更多
A theory on the second order wave diffraction by a three dimensional body fixed in a regular sea has been developed in the present paper. By regarding the sinusoidal disturb potential as a stationary solu- tion of an ...A theory on the second order wave diffraction by a three dimensional body fixed in a regular sea has been developed in the present paper. By regarding the sinusoidal disturb potential as a stationary solu- tion of an initial value problem, and using Laplace transformation method and Tauberian theorem, the boundary value problems of stationary solution of the first and second order diffraction potential have been de- rived in this paper. Furthermore, the explicit solution of the second order stationary diffraction potential has been obtained with the method of the double Fourier transformation. It is found that the asymptotic behaviour of the second order stationary solution at far field is dependent on two wave systems, the first is 'free wave', travelling independently of the first order wave system, the other is 'phase locked waves', which accompany the first order waves. At the same time, the radiation conditions of the second order diffraction problems are derived. We also find that one can still pursue a steady state formulation with the inclusion of Rayleigh damping. Finally, as an example, the second order wave forces upon a fixed vertical cir- cular cylinder have been calculated, and the numerical results agree well with the experimental data.展开更多
文摘A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column.The fluid domain is divided into interior and exterior regions.In the exterior region,the second-order velocity potential is expressed in terms of‘locked-wave’and‘free-wave’ components,both are solved using Fourier and eigenfunction expansions.The re- sulting‘locked wave’potential is expressed by one-dimensional Green's integrals with oscillating integrands.In order to increase computational efficiency,the far-field part of the integrals are carried out analytically.Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions.Based on the present approach,the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates the incident wave spectrum with second-order forcing spectrum on the column.The sum-frequency QTFs for a TLP column are present,which are compared for some frequency pairs with those from a fully numerical procedure.Satisfactory agreement has been obtained.QTF spectra for a case study TLP column,generated using the semi-analytical solution are presented.Also given are the results for nonlinear wave field around the column.
基金the financial support provided by the National Basic Research Program of China(No.2011CB3703)the National Natural Science Foundation of China(No.51079034)
文摘To solve the numerical divergence problem of the direct time domain Green function method for the motion simulation of floating bodies with large flare, a time domain hybrid Rankine-Green boundary element method is proposed. In this numerical method, the fluid domain is decomposed by an imaginary control surface, at which the continuous condition should be satisfied. Then the Rankine Green function is adopted in the inner domain. The transient free surface Green function is applied in the outer domain, which is used to find the relationship between the velocity potential and its normal derivative for the inner domain. Besides, the velocity potential at the mean free surface between body surface and control surface is directly solved by the integration scheme. The wave exciting force is computed through the convolution integration with wave elevation, by introducing the impulse response function. Additionally, the nonlinear Froude-Krylov force and hydrostatic force, which is computed under the instantaneous incident wave free surface, are taken into account by the direct pressure integration scheme. The corresponding numerical computer code is developed and first used to compute the hydrodynamic coefficients of the hemisphere, as well as the time history of a ship with large flare; good agreement is obtained with the analytical solutions as well as the available numerical results. Then the hydrodynamic properties of a FPSO are studied. The hydrodynamic coefficients agree well with the results computed by the frequency method; the influence of the time interval and the truncated time is investigated in detail.
文摘A theory on the second order wave diffraction by a three dimensional body fixed in a regular sea has been developed in the present paper. By regarding the sinusoidal disturb potential as a stationary solu- tion of an initial value problem, and using Laplace transformation method and Tauberian theorem, the boundary value problems of stationary solution of the first and second order diffraction potential have been de- rived in this paper. Furthermore, the explicit solution of the second order stationary diffraction potential has been obtained with the method of the double Fourier transformation. It is found that the asymptotic behaviour of the second order stationary solution at far field is dependent on two wave systems, the first is 'free wave', travelling independently of the first order wave system, the other is 'phase locked waves', which accompany the first order waves. At the same time, the radiation conditions of the second order diffraction problems are derived. We also find that one can still pursue a steady state formulation with the inclusion of Rayleigh damping. Finally, as an example, the second order wave forces upon a fixed vertical cir- cular cylinder have been calculated, and the numerical results agree well with the experimental data.