The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schrodinger equation for several types of nonlocal responses are calculated by Ritz's variational method. For a specific type of n...The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schrodinger equation for several types of nonlocal responses are calculated by Ritz's variational method. For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but different degrees of nonlocality are identical except for an amplitude factor. For a nonlocal case where the nonlocal response function decays in direct proportion to the mth power of the distance near the source point, the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the (m + 2)th power of its beam width.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474023 and 10674050) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060574006).
文摘The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schrodinger equation for several types of nonlocal responses are calculated by Ritz's variational method. For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but different degrees of nonlocality are identical except for an amplitude factor. For a nonlocal case where the nonlocal response function decays in direct proportion to the mth power of the distance near the source point, the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the (m + 2)th power of its beam width.