The Spalart-Allmaras (S-A) turbulence model, the shear-stress transport (SST) turbulence model and their compressibility corrections are revaluated for hypersonic compression comer flows by using high-order differ...The Spalart-Allmaras (S-A) turbulence model, the shear-stress transport (SST) turbulence model and their compressibility corrections are revaluated for hypersonic compression comer flows by using high-order difference schemes. The compressibility effect of density gradient, pressure dilatation and turbulent Mach number is accounted. In order to reduce confusions between model uncertainties and discretization errors, the formally fifth-order explicit weighted compact nonlinear scheme (WCNS-E-5) is adopted for convection terms, and a fourth-order staggered central difference scheme is applied for viscous terms. The 15° and 34° compression comers at Mach number 9.22 are investigated. Numerical results show that the original SST model is superior to the original S-A model in the resolution of separated regions and predictions of wall pressures and wall heat-flux rates. The capability of the S-A model can be largely improved by blending Catris' and Shur's compressibility corrections. Among the three corrections of the SST model listed in the present paper, Catris' modification brings the best results. However, the dissipation and pressure dilatation corrections result in much larger separated regions than that of the experiment, and are much worse than the original SST model as well as the other two corrections. The correction of turbulent Mach number makes the separated region slightly smaller than that of the original SST model. Some results of low-order schemes are also presented. When compared to the results of the high-order schemes, the separated regions are smaller, and the peak wall pressures and peak heat-flux rates are lower in the region of the reattachment points.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
基金Foundation items: National Basic Research Program of China (2009CB723801) National Natural Science Foundation of China (11072259)
文摘The Spalart-Allmaras (S-A) turbulence model, the shear-stress transport (SST) turbulence model and their compressibility corrections are revaluated for hypersonic compression comer flows by using high-order difference schemes. The compressibility effect of density gradient, pressure dilatation and turbulent Mach number is accounted. In order to reduce confusions between model uncertainties and discretization errors, the formally fifth-order explicit weighted compact nonlinear scheme (WCNS-E-5) is adopted for convection terms, and a fourth-order staggered central difference scheme is applied for viscous terms. The 15° and 34° compression comers at Mach number 9.22 are investigated. Numerical results show that the original SST model is superior to the original S-A model in the resolution of separated regions and predictions of wall pressures and wall heat-flux rates. The capability of the S-A model can be largely improved by blending Catris' and Shur's compressibility corrections. Among the three corrections of the SST model listed in the present paper, Catris' modification brings the best results. However, the dissipation and pressure dilatation corrections result in much larger separated regions than that of the experiment, and are much worse than the original SST model as well as the other two corrections. The correction of turbulent Mach number makes the separated region slightly smaller than that of the original SST model. Some results of low-order schemes are also presented. When compared to the results of the high-order schemes, the separated regions are smaller, and the peak wall pressures and peak heat-flux rates are lower in the region of the reattachment points.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.