Aiming to suppress the influence of uncertain disturbances in the drive control of permanent magnet synchronous machines(PMSM),such as the parameter uncertainties and load disturbance,a robust anti-interference contro...Aiming to suppress the influence of uncertain disturbances in the drive control of permanent magnet synchronous machines(PMSM),such as the parameter uncertainties and load disturbance,a robust anti-interference control for the angular position tracking control of a PMSM servo system has been proposed in this paper.During the position tracking,uncertain system disturbances being regarded as a lumped unknown term will be online observed by a nonlinear disturbance observer(NDOB),of which the influence will consequently be counteracted by a robust backstepping compensator(RBC).The asymptotical stability of proposed control scheme is analyzed and designed according to the Lyapunov stability criterion,and its convergence against the system uncertain disturbance is verified on a prototype PMSM servo platform and shows good performance in rotor angular position tracking and anti-interference.展开更多
论文提出一种针对单边直线感应电机(single-sided linear induction motors,SLIMs)的基于非线性负载扰动观测器的预测电流补偿控制策略。首先考虑到SLIM特有的动态端部效应的影响,通过跟踪补偿M-轴电流分量来维持次级磁链T-轴分量的恒定...论文提出一种针对单边直线感应电机(single-sided linear induction motors,SLIMs)的基于非线性负载扰动观测器的预测电流补偿控制策略。首先考虑到SLIM特有的动态端部效应的影响,通过跟踪补偿M-轴电流分量来维持次级磁链T-轴分量的恒定,而后在一次线性条件下,引入一阶离散泰勒级数对速度状态进行预测。另一方面将电机气隙变化与各类边端效应对电机推力输出的影响统一为系统受到负载扰动的影响,而应对此扰动,通过非线性扰动观测器,在预测前向控制通路增加了实时补偿控制量,借此提升整个预测控制系统的鲁棒特性。最后实验对所提算法的有效性进行了验证。展开更多
An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideratio...An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.展开更多
基金The work is supported by the financial support of National Natural Science Foundation of China under Grant 51877075 and 51575167the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(No.71865008)+1 种基金Hunan University,and the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERIKF2018007)Hebei University of Technology.
文摘Aiming to suppress the influence of uncertain disturbances in the drive control of permanent magnet synchronous machines(PMSM),such as the parameter uncertainties and load disturbance,a robust anti-interference control for the angular position tracking control of a PMSM servo system has been proposed in this paper.During the position tracking,uncertain system disturbances being regarded as a lumped unknown term will be online observed by a nonlinear disturbance observer(NDOB),of which the influence will consequently be counteracted by a robust backstepping compensator(RBC).The asymptotical stability of proposed control scheme is analyzed and designed according to the Lyapunov stability criterion,and its convergence against the system uncertain disturbance is verified on a prototype PMSM servo platform and shows good performance in rotor angular position tracking and anti-interference.
基金This work was supported by the National Natural Science Foundation of China (51307076), and the Provincial Natural Science Foundation of Liaoning (201602350).
文摘论文提出一种针对单边直线感应电机(single-sided linear induction motors,SLIMs)的基于非线性负载扰动观测器的预测电流补偿控制策略。首先考虑到SLIM特有的动态端部效应的影响,通过跟踪补偿M-轴电流分量来维持次级磁链T-轴分量的恒定,而后在一次线性条件下,引入一阶离散泰勒级数对速度状态进行预测。另一方面将电机气隙变化与各类边端效应对电机推力输出的影响统一为系统受到负载扰动的影响,而应对此扰动,通过非线性扰动观测器,在预测前向控制通路增加了实时补偿控制量,借此提升整个预测控制系统的鲁棒特性。最后实验对所提算法的有效性进行了验证。
基金Project(114601034)supported by the Scholarship Award for Excellent Doctoral Students Granted by the Ministry of Education of ChinaProject(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.