期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
变风量空调系统用非线性模型预测控制方法研究 被引量:12
1
作者 陈炯德 王子轩 +3 位作者 姚晔 王绍凡 冯静梅 赵鹏生 《制冷学报》 CAS CSCD 北大核心 2019年第6期62-69,共8页
在工业HVAC系统中,为了提高在大扰量下的控制精度,模型预测控制(MPC)被广泛应用。本文提出一种用于变风量(VAV)系统的非线性MPC。该非线性MPC采用具有外部输入的非线性自回归网络(NARX)和粒子群优化算法(PSO)。NARX模型旨在预测VAV系统... 在工业HVAC系统中,为了提高在大扰量下的控制精度,模型预测控制(MPC)被广泛应用。本文提出一种用于变风量(VAV)系统的非线性MPC。该非线性MPC采用具有外部输入的非线性自回归网络(NARX)和粒子群优化算法(PSO)。NARX模型旨在预测VAV系统的受控参数(室温),PSO作为优化器,来获得VAV系统的最优控制变量。通过为成本函数的目标分配不同的权值,本文提出的非线性MPC能权衡VAV系统的控制精度和节能需求,以达到不同的控制效果。不同权值的两种方案在实验室的VAV系统中得到了验证,其中方案1仅考虑控制精度,方案2同时考虑了控制精度和节能性。分别将实验得到的两种方案的MPC的控制效果与基于PI控制器的定静压方法进行对比,实验结果表明:基于MPC的方案1可以实现室温稳定在设定值±0.5℃的控制精度范围;基于MPC的方案2显示出更好的节能特性,与定静压方法对比,节能率达到23.7%。 展开更多
关键词 非线性模型预测控制 变风量系统 神经网络模型 粒子群优化
下载PDF
基于非线性自回归神经网络的局部大气密度预测方法 被引量:6
2
作者 常欣卓 杨开忠 +2 位作者 李新 沈红新 李恒年 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第12期1015-1022,共8页
由于现有大气密度模型精度不足,在对低轨卫星定轨和轨道预报时容易产生较大误差,而观测手段的缺乏以及对高层大气物理机理缺乏足够了解给大气密度模型的建立带来了一定的困难.提出了利用神经网络来建立大气密度预测模型.首先,利用两行... 由于现有大气密度模型精度不足,在对低轨卫星定轨和轨道预报时容易产生较大误差,而观测手段的缺乏以及对高层大气物理机理缺乏足够了解给大气密度模型的建立带来了一定的困难.提出了利用神经网络来建立大气密度预测模型.首先,利用两行轨道根数对NRLMSISE-00大气模型校准得到沿轨道的局部化密度模型,然后基于非线性自适应回归神经网络(NARX)构建大气密度预测模型.该模型主要结合校准后MSIS模型以及太阳与地磁活动指数来预测未来一段时间内局部大气密度.将该模型应用于不同的卫星轨道数据,进行了多个时间段的模拟试验.与卫星实测密度的比对结果显示,相对于MSIS密度模型,该模型的预测误差有了一定的减小,为提高低轨卫星短期轨道预报精度提供了思路. 展开更多
关键词 低轨卫星 大气密度 轨道预报 narx神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部