The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of K...The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of Kelvin-Helmholtz instability(KHI). It is found that, the relaxation time always strengthens the global nonequilibrium(GNE), entropy of mixing, and free enthalpy of mixing. Specifically, as a combined effect of physical gradients and nonequilibrium area, the GNE intensity first increases but decreases during the whole life-cycle of KHI. The growth rate of entropy of mixing shows firstly reducing, then increasing, and finally decreasing trends during the KHI process. The trend of the free enthalpy of mixing is opposite to that of the entropy of mixing. Detailed explanations are:(i) Initially,binary diffusion smooths quickly the sharp gradient in the mole fraction, which results in a steeply decreasing mixing rate.(ii) Afterwards, the mixing process is significantly promoted by the increasing length of material interface in the evolution of the KHI.(iii) As physical gradients are smoothed due to the binary diffusion and dissipation, the mixing rate reduces and approaches zero in the final stage. Moreover, with the increasing Atwood number, the global strength of viscous stresses on the heavy(light) medium reduces(increases), because the heavy(light) medium has a relatively small(large) velocity change. Furthermore, for a smaller Atwood number, the peaks of nonequilibrium manifestations emerge earlier, the entropy of mixing and free enthalpy of mixing change faster, because the KHI initiates a higher growth rate.展开更多
Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenome...Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one.展开更多
基金Supported by the Natural Science Foundation of China under Grant Nos.91441120,51806116,11875001,and 11602162the China Postdoctoral Science Foundation under Grant No.2017M620757+2 种基金the Center for Combustion Energy at Tsinghua Universitythe Natural Science Foundation of Hebei Province under Grant Nos.A2017409014,ZD2017001,and A201500111the UK Engineering and Physical Sciences Research Council under Project UK Consortium on Mesoscale Engineering Sciences(UKCOMES)under Grant Nos.EP/L00030X/1 and EP/R029598/1
文摘The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of Kelvin-Helmholtz instability(KHI). It is found that, the relaxation time always strengthens the global nonequilibrium(GNE), entropy of mixing, and free enthalpy of mixing. Specifically, as a combined effect of physical gradients and nonequilibrium area, the GNE intensity first increases but decreases during the whole life-cycle of KHI. The growth rate of entropy of mixing shows firstly reducing, then increasing, and finally decreasing trends during the KHI process. The trend of the free enthalpy of mixing is opposite to that of the entropy of mixing. Detailed explanations are:(i) Initially,binary diffusion smooths quickly the sharp gradient in the mole fraction, which results in a steeply decreasing mixing rate.(ii) Afterwards, the mixing process is significantly promoted by the increasing length of material interface in the evolution of the KHI.(iii) As physical gradients are smoothed due to the binary diffusion and dissipation, the mixing rate reduces and approaches zero in the final stage. Moreover, with the increasing Atwood number, the global strength of viscous stresses on the heavy(light) medium reduces(increases), because the heavy(light) medium has a relatively small(large) velocity change. Furthermore, for a smaller Atwood number, the peaks of nonequilibrium manifestations emerge earlier, the entropy of mixing and free enthalpy of mixing change faster, because the KHI initiates a higher growth rate.
文摘Nonequilibrium effect due to the imbalance in the number of the ? and ? spin electrons has been studied for the tunneling currents in the ferromagnet-insulator-superconductor (FIS) tunneling junctions within a phenomenological manner. It has been stated how the nonequilibrium effect should be observed in the spin-polarized quasiparticle tunneling currents, and pointed out that the detectable nonequilibrium effect could be found in the FIS tunneling junction at 77 K using HgBa2Ca2Cu3O8+? (Hg-1223) high-Tc superconductor rather than Bi2Sr2CaCu2O8+? (Bi-2212) one.