In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The...In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The construction process is mainly implemented by solving linear systems for primal and dual subdivision schemes respectively, which are based on different parameterizations. We give the theoretical basis for the existence, uniqueness, and refinement rules of schemes proposed in this paper. The convergence and smoothness of the schemes are analyzed as well. Moreover, conics reproducing schemes are analyzed based on our theory, and a new idea that the tensor parameter ωk of the schemes can be adjusted for conics generation is proposed.展开更多
A generalized non-stationary curve subdivision (GNS for short) scheme of arbitrary order k≥3 with a parameter has been proposed by Fang et al. in the paper (Fang Mei-e et al., CAGD, 2010(27): 720-733). It has ...A generalized non-stationary curve subdivision (GNS for short) scheme of arbitrary order k≥3 with a parameter has been proposed by Fang et al. in the paper (Fang Mei-e et al., CAGD, 2010(27): 720-733). It has been proved that the proposed scheme of order k generates C^k-2 continuous curves for k≥4. But the proof of the smoothness in this paper is uncompleted. Moreover, the Cl-continuity of the third order scheme has not been discussed. For this reason, in this paper, we provide a full corrected proof of the smoothness of the GNS scheme of order k for k≥3.展开更多
基金Supported by the National Natural Science Foundation of China(No.60873181 and No.u0935004)
文摘In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The construction process is mainly implemented by solving linear systems for primal and dual subdivision schemes respectively, which are based on different parameterizations. We give the theoretical basis for the existence, uniqueness, and refinement rules of schemes proposed in this paper. The convergence and smoothness of the schemes are analyzed as well. Moreover, conics reproducing schemes are analyzed based on our theory, and a new idea that the tensor parameter ωk of the schemes can be adjusted for conics generation is proposed.
基金Supported by National Natural Science Foundation of China(Nos.61272032,60904070)
文摘A generalized non-stationary curve subdivision (GNS for short) scheme of arbitrary order k≥3 with a parameter has been proposed by Fang et al. in the paper (Fang Mei-e et al., CAGD, 2010(27): 720-733). It has been proved that the proposed scheme of order k generates C^k-2 continuous curves for k≥4. But the proof of the smoothness in this paper is uncompleted. Moreover, the Cl-continuity of the third order scheme has not been discussed. For this reason, in this paper, we provide a full corrected proof of the smoothness of the GNS scheme of order k for k≥3.