期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合非负正弦位置编码和混合注意力机制的情感分析模型
1
作者 郑志超 陈进东 张健 《计算机工程与应用》 CSCD 北大核心 2024年第15期101-110,共10页
针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanis... 针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanism,HAM)的双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)情感分析模型(NSPEHA-BiLSTM)。提出NSPE方法,建立词语的NSPE,为词向量融入相对位置信息;通过Bi-LSTM提取文本特征,并基于HAM分别对特征的全局和局部特征进行赋权,确保关键信息的准确传递;通过全连接层实现文本情感分析。在IMDB数据集中,NSPEA-BiLSTM相较于Bi-LSTM和Text-CNN准确率分别提升了4.67和2.02个百分点,且输入的文本长度越长,模型效果越好,同时验证了NSPE优于其他位置编码。 展开更多
关键词 情感分析 双向长短期记忆网络(Bi-LSTM) 非负正弦位置编码(nspe) 混合注意力机制(HAM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部