在大气CO2浓度升高和氮沉降增加等全球变化背景下,森林生态系统减缓CO2浓度升高的作用及其对全球变化的响应和反馈存在诸多不确定性。森林生态系统碳氮循环相互作用及功能耦合规律的研究是揭示这些不确定性的基础,也是反映森林生态系统...在大气CO2浓度升高和氮沉降增加等全球变化背景下,森林生态系统减缓CO2浓度升高的作用及其对全球变化的响应和反馈存在诸多不确定性。森林生态系统碳氮循环相互作用及功能耦合规律的研究是揭示这些不确定性的基础,也是反映森林生态系统生物产量与养分之间作用规律,涉及林地持久生产力(sustainability of long-term site productivity)的生态学机理问题。森林生态系统碳氮循环的耦合作用表现在林冠层光合作用的碳固定过程,森林植物组织呼吸、土壤凋落物与土壤有机质分解、地下部分根系周转与呼吸等碳释放过程,这些过程存在反馈机理和非线性作用,最终决定森林生态系统的碳平衡。着重在生态系统尺度上,综述了碳氮循环耦合作用研究的一些进展与存在的问题,对今后研究方向进行了展望。展开更多
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-depend...Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.展开更多
The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time h...The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.展开更多
The formation and evolution of fine and complicated vortex circulation structures were investigated using a two-dimensional quasi-geostrophic barotropic model simulation.We find that the highly localized asymmetric an...The formation and evolution of fine and complicated vortex circulation structures were investigated using a two-dimensional quasi-geostrophic barotropic model simulation.We find that the highly localized asymmetric and complex configuration of energy transfer flux between large-and small-scale components is caused by the nonlinear interaction between a large-scale vortex with an initial axi-symmetric flow and four beta meso-scale vortices.The complex structure is characterized by a fine pattern,which contains seven closed systems with spatial scales of less than 100 km,embedded in a positive flux wave train and a negative wave train,respectively.The average wind speed decreased with time in the positive flux region,but was nearly unchanged in the negative flux region.This pattern reveals the evolutionary asymmetry and localization of wind speed of the major vortex.The track of the major vortex center has a trend toward the center of the negative flux center,indicating that there is a certain relation between the complex structure of the energy transfer flux and the motion of the major vortex center.These results imply that the formation and evolution of the fine and complex structure should be attributed to the nonlinear interaction between the vortices at different spatial scales.展开更多
Ten years of SABER/TIMED temperature data are used to analyze the global structure and seasonal variations of the migrating 6-h tide from the stratosphere to the lower thermosphere. The amplitudes of the migrating 6-h...Ten years of SABER/TIMED temperature data are used to analyze the global structure and seasonal variations of the migrating 6-h tide from the stratosphere to the lower thermosphere. The amplitudes of the migrating 6-h tide increase with altitudes. In the stratosphere, the migrating 6-h tide peaks around 35°N/S. The climatologically annual mean of the migrating 6-h tide clearly shows the manifestation of the(4, 6) Hough mode between 70 and 90 km that peaks at the equator and near 35°N/S. Above 90 km, the 6-h tide shows more than one Hough mode with the(4, 6) mode being the dominant one. The migrating 6-h tide is stronger in the southern hemisphere. Annual, semiannual, 4-, and 3-month oscillations are the four dominant seasonal variations of the tidal amplitude. In the stratosphere and stratopause, the spring enhancement of the 6-h tide at middle latitudes is the most conspicuous feature. From the mesosphere to the lower thermosphere, the tidal amplitude at low latitudes is gradually in the scale of that at middle latitudes and exhibits different temporal variations at different altitudes and latitudes. Both ozone heating in the stratosphere and the background atmosphere probably affect the generation and the seasonal variations of the migrating 6-h tide. In addition, the non-linear interaction between different tidal harmonics is another possible mechanism.展开更多
The identification of vortex,vortex,sound and heat motions and the interactions among them are discussed by means of velocity vector split and perturbation method in this paper.Especially the shear.flow is considered...The identification of vortex,vortex,sound and heat motions and the interactions among them are discussed by means of velocity vector split and perturbation method in this paper.Especially the shear.flow is considered.All the obtained weakly non-linear equarions have clear physics concept. Basing on the analysis.the interaction between first order sound and vortex.and the creation of the secnd order vortex are studied and some.experiment phenomena of airfoil.flow control by sound are explained.展开更多
As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The ...As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The proposed study investigates the dynamic effects of SSI on TLT behavior.Linear and non-linearmodels are studied.In the linearmodel,the soil is represented by complex impedances,dependent of dynamic frequency,determined from numerical simulations.The nonlinearmodel considers the soil non-linear behavior in its material constitutive law and foundation uplift in a non-linear time history analysis.The simplified structure behavior of a typical lattice transmission tower is assessed.The analysis of frequency and time domain are followed through varying soil stiffness and damping values.Three different shock durations are investigated.The soil-structure system with equivalent dynamic properties is determined.The behaviors achieved utilizing a rigid and a flexible base for the structures is compared to estimate the impact of taking SSI into account in the calculation.The current mainstream approach in structural engineering,emphasizing the importance of the SSI effect,is illustrated using an example where the SSI effect could be detrimental to the structure.Furthermore,the non-linear analysis results are analyzed to show the linear approach’s limitations in the event of grand deformations.展开更多
文摘在大气CO2浓度升高和氮沉降增加等全球变化背景下,森林生态系统减缓CO2浓度升高的作用及其对全球变化的响应和反馈存在诸多不确定性。森林生态系统碳氮循环相互作用及功能耦合规律的研究是揭示这些不确定性的基础,也是反映森林生态系统生物产量与养分之间作用规律,涉及林地持久生产力(sustainability of long-term site productivity)的生态学机理问题。森林生态系统碳氮循环的耦合作用表现在林冠层光合作用的碳固定过程,森林植物组织呼吸、土壤凋落物与土壤有机质分解、地下部分根系周转与呼吸等碳释放过程,这些过程存在反馈机理和非线性作用,最终决定森林生态系统的碳平衡。着重在生态系统尺度上,综述了碳氮循环耦合作用研究的一些进展与存在的问题,对今后研究方向进行了展望。
基金National Natural Science Foundation of China Under Grant No.50139010
文摘Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.
基金Project supported by the China Scholarship(Grant No.201406715005)Qing Lan Project,the Natural National Science Foundation of China(Grant Nos.11172090,11272113)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012809)
文摘The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.
基金supported by National Natural Science Foundation of China (Grant Nos.40775038,40875031,and 40975036)
文摘The formation and evolution of fine and complicated vortex circulation structures were investigated using a two-dimensional quasi-geostrophic barotropic model simulation.We find that the highly localized asymmetric and complex configuration of energy transfer flux between large-and small-scale components is caused by the nonlinear interaction between a large-scale vortex with an initial axi-symmetric flow and four beta meso-scale vortices.The complex structure is characterized by a fine pattern,which contains seven closed systems with spatial scales of less than 100 km,embedded in a positive flux wave train and a negative wave train,respectively.The average wind speed decreased with time in the positive flux region,but was nearly unchanged in the negative flux region.This pattern reveals the evolutionary asymmetry and localization of wind speed of the major vortex.The track of the major vortex center has a trend toward the center of the negative flux center,indicating that there is a certain relation between the complex structure of the energy transfer flux and the motion of the major vortex center.These results imply that the formation and evolution of the fine and complex structure should be attributed to the nonlinear interaction between the vortices at different spatial scales.
基金supported by the Chinese Academy of Sciences(Grant No.KZZD-EW-01-2)the National Natural Science Foundation of China(Grant Nos.41331069,41274153)+2 种基金the National Basic Research Program of China(Grant No.2011CB811405)the Specialized Research Fund for State Key Laboratories of Chinaperformed by Numerical Forecast Modelling R&D and VR System of State Key Lab.of Space Weather and Special HPC workstand of Chinese Meridian Project
文摘Ten years of SABER/TIMED temperature data are used to analyze the global structure and seasonal variations of the migrating 6-h tide from the stratosphere to the lower thermosphere. The amplitudes of the migrating 6-h tide increase with altitudes. In the stratosphere, the migrating 6-h tide peaks around 35°N/S. The climatologically annual mean of the migrating 6-h tide clearly shows the manifestation of the(4, 6) Hough mode between 70 and 90 km that peaks at the equator and near 35°N/S. Above 90 km, the 6-h tide shows more than one Hough mode with the(4, 6) mode being the dominant one. The migrating 6-h tide is stronger in the southern hemisphere. Annual, semiannual, 4-, and 3-month oscillations are the four dominant seasonal variations of the tidal amplitude. In the stratosphere and stratopause, the spring enhancement of the 6-h tide at middle latitudes is the most conspicuous feature. From the mesosphere to the lower thermosphere, the tidal amplitude at low latitudes is gradually in the scale of that at middle latitudes and exhibits different temporal variations at different altitudes and latitudes. Both ozone heating in the stratosphere and the background atmosphere probably affect the generation and the seasonal variations of the migrating 6-h tide. In addition, the non-linear interaction between different tidal harmonics is another possible mechanism.
文摘The identification of vortex,vortex,sound and heat motions and the interactions among them are discussed by means of velocity vector split and perturbation method in this paper.Especially the shear.flow is considered.All the obtained weakly non-linear equarions have clear physics concept. Basing on the analysis.the interaction between first order sound and vortex.and the creation of the secnd order vortex are studied and some.experiment phenomena of airfoil.flow control by sound are explained.
基金This work was financed by The Natural Sciences and Engineering Research Council of Canada(NSERC)and Hydro-Québec Transénergy(HQTE).
文摘As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The proposed study investigates the dynamic effects of SSI on TLT behavior.Linear and non-linearmodels are studied.In the linearmodel,the soil is represented by complex impedances,dependent of dynamic frequency,determined from numerical simulations.The nonlinearmodel considers the soil non-linear behavior in its material constitutive law and foundation uplift in a non-linear time history analysis.The simplified structure behavior of a typical lattice transmission tower is assessed.The analysis of frequency and time domain are followed through varying soil stiffness and damping values.Three different shock durations are investigated.The soil-structure system with equivalent dynamic properties is determined.The behaviors achieved utilizing a rigid and a flexible base for the structures is compared to estimate the impact of taking SSI into account in the calculation.The current mainstream approach in structural engineering,emphasizing the importance of the SSI effect,is illustrated using an example where the SSI effect could be detrimental to the structure.Furthermore,the non-linear analysis results are analyzed to show the linear approach’s limitations in the event of grand deformations.