针对无线定位中非视距(Non-Line of Sight,NLOS)误差对定位精度的影响,在分析NLOS误差特性的基础之上提出了多尺度误差抑制算法。该算法将信号的多尺度估计方法和卡尔曼滤波相结合,利用小波变换特有的低通滤波特性能和小波阀值去噪能够...针对无线定位中非视距(Non-Line of Sight,NLOS)误差对定位精度的影响,在分析NLOS误差特性的基础之上提出了多尺度误差抑制算法。该算法将信号的多尺度估计方法和卡尔曼滤波相结合,利用小波变换特有的低通滤波特性能和小波阀值去噪能够很好地消除到达时间/到达时间差分(Time of Arrival/Time Diff of Arrival,TOA/TDOA)测量值中的NLOS误差,给出了Haar小波的实现方法。仿真实验结果表明,该算法在不同的NLOS误差模型和不同的信道环境下均能很好地抑制NLOS误差,较大幅度地提高了定位精度。展开更多
文摘针对无线定位中非视距(Non-Line of Sight,NLOS)误差对定位精度的影响,在分析NLOS误差特性的基础之上提出了多尺度误差抑制算法。该算法将信号的多尺度估计方法和卡尔曼滤波相结合,利用小波变换特有的低通滤波特性能和小波阀值去噪能够很好地消除到达时间/到达时间差分(Time of Arrival/Time Diff of Arrival,TOA/TDOA)测量值中的NLOS误差,给出了Haar小波的实现方法。仿真实验结果表明,该算法在不同的NLOS误差模型和不同的信道环境下均能很好地抑制NLOS误差,较大幅度地提高了定位精度。