The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's th...The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's theorem and Naether's inverse theorem of the system above is presented and proved. Finally, one example is given to illustrate the application.展开更多
The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame and provides a closed form vector solution determined by vector and matrix calculus. The solution is determined through ...The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame and provides a closed form vector solution determined by vector and matrix calculus. The solution is determined through vector and matrix calculus in both cases, for both forms of the law of motion (for the Foucault Pendulum Problem and its “Reduced Form”). A complex vector which transforms the motion equation in a first order differential equation with constant coefficients is used. Also, a novel kinematic interpretation of the Foucault Pendulum motion is given.展开更多
文摘The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's theorem and Naether's inverse theorem of the system above is presented and proved. Finally, one example is given to illustrate the application.
文摘The paper studies the motion of the Foucault Pendulum in a rotating non-inertial reference frame and provides a closed form vector solution determined by vector and matrix calculus. The solution is determined through vector and matrix calculus in both cases, for both forms of the law of motion (for the Foucault Pendulum Problem and its “Reduced Form”). A complex vector which transforms the motion equation in a first order differential equation with constant coefficients is used. Also, a novel kinematic interpretation of the Foucault Pendulum motion is given.