A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining eq...A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.展开更多
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe...In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.展开更多
This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new n...This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results.展开更多
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-...In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19972010).
文摘A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13097)the Key Science and Technology Innovation Team Project of Zhejiang Province,China(Grant No.2013TD18)
文摘In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.
文摘This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143, 10471145 and 10372053) and the Natural Science Foundation of Henan Province Government of China(Grant Nos 0511022200 and 0311011400).
文摘In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.