First a description of 2+1 dimensional non-commutative(NC) phase space is presented,and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and stra...First a description of 2+1 dimensional non-commutative(NC) phase space is presented,and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space.展开更多
For a spin-l/2 particle moving in a background magnetic field in noncommutative phase space, the Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to....For a spin-l/2 particle moving in a background magnetic field in noncommutative phase space, the Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It is shown that the motion of the charged particle along the magnetic field has the effect of increasing the magnetic field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical picture. Along an effective magnetic field, the mechanical momentum is conserved and the motion perpendicular to the effective magnetic field follows a round orbit. If using the velocity operator defined by the coordinate operators, the motion becomes complicated.展开更多
In this paper, the Non-Commutative phase space and Dirac equation, time-dependent Dirac oscillator are introduced. After presenting the desire general form of a two-dimensional linear dependency on the coordinate time...In this paper, the Non-Commutative phase space and Dirac equation, time-dependent Dirac oscillator are introduced. After presenting the desire general form of a two-dimensional linear dependency on the coordinate timedependent potential, the Dirac equation is written in terms of Non-Commutative phase space parameters and solved in a general form by using Lewis–Riesenfield invariant method and the time-dependent invariant of Dirac equation with two-dimensional linear dependency on the coordinate time-dependent potential in Non-Commutative phase space has been constructed, then such latter operations are done for time-dependent Dirac oscillator. In order to solve the differential equation of wave function time evolution for Dirac equation and time-dependent Dirac oscillator which are partial differential equation some appropriate ordinary physical problems have been studied and at the end the interesting result has been achieved.展开更多
We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined t...We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined the influence of the phase-space non-commutativity on both the locality and the non-locality, where the definition of current density in commutative phase-space cannot satisfy the condition of current conservation, but with the steady state, in order to solve this problem, we give a new definition of the current density including the contribution due to the non-local potential. We showed that the calculated current based on the new definition of current density maintains the current. As well for the case when the non- commutativity in phase-space considered, we found that the conservation of the current density completely violated;and the non-commutativity is not suitable for describing the current density in presence of non-local and local potentials. Nevertheless, under some conditions, we modified the current density to solve this problem. Subsequently, as an application we studied the Frahn-Lemmer non-local potential, taking into account that the employed methods concerning the phase-space non-commutativity are both of Bopp-shift linear transformation through the Heisenberg-like commutation relations, and the Moyal-Weyl product.展开更多
The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the mod...The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the modified equations of motion. Next, using novel transformations, we solve the equation of motion and report the exact analytical solutions.展开更多
基金Open Topic of State Key Laboratory for Superlattices and Microstructures(CHJG200902)Scientific Research Project in Shaanxi Province(2009K01-54)Foundation of Shanxi University of Technology(SLGKY10-02)~~
基金Supported by National Natural Science Foundation of China( 10875035,10965006)Natural Science Foundation of Zhejiang Provence (Y607437)
文摘First a description of 2+1 dimensional non-commutative(NC) phase space is presented,and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space.
基金Supported by National Natural Science Foundation of China(11105077)
文摘For a spin-l/2 particle moving in a background magnetic field in noncommutative phase space, the Dirac equation is solved when the particle is allowed to move off the plane that the magnetic field is perpendicular to. It is shown that the motion of the charged particle along the magnetic field has the effect of increasing the magnetic field. In the classical limit, matrix elements of the velocity operator related to the probability give a clear physical picture. Along an effective magnetic field, the mechanical momentum is conserved and the motion perpendicular to the effective magnetic field follows a round orbit. If using the velocity operator defined by the coordinate operators, the motion becomes complicated.
文摘In this paper, the Non-Commutative phase space and Dirac equation, time-dependent Dirac oscillator are introduced. After presenting the desire general form of a two-dimensional linear dependency on the coordinate timedependent potential, the Dirac equation is written in terms of Non-Commutative phase space parameters and solved in a general form by using Lewis–Riesenfield invariant method and the time-dependent invariant of Dirac equation with two-dimensional linear dependency on the coordinate time-dependent potential in Non-Commutative phase space has been constructed, then such latter operations are done for time-dependent Dirac oscillator. In order to solve the differential equation of wave function time evolution for Dirac equation and time-dependent Dirac oscillator which are partial differential equation some appropriate ordinary physical problems have been studied and at the end the interesting result has been achieved.
文摘We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined the influence of the phase-space non-commutativity on both the locality and the non-locality, where the definition of current density in commutative phase-space cannot satisfy the condition of current conservation, but with the steady state, in order to solve this problem, we give a new definition of the current density including the contribution due to the non-local potential. We showed that the calculated current based on the new definition of current density maintains the current. As well for the case when the non- commutativity in phase-space considered, we found that the conservation of the current density completely violated;and the non-commutativity is not suitable for describing the current density in presence of non-local and local potentials. Nevertheless, under some conditions, we modified the current density to solve this problem. Subsequently, as an application we studied the Frahn-Lemmer non-local potential, taking into account that the employed methods concerning the phase-space non-commutativity are both of Bopp-shift linear transformation through the Heisenberg-like commutation relations, and the Moyal-Weyl product.
基金Supported by the China Scholarship Councilthe Hanjiang Scholar Project of Shaanxi University of Technology
文摘The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the modified equations of motion. Next, using novel transformations, we solve the equation of motion and report the exact analytical solutions.