With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed o...With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed of HFOs (HFO-1234yf, HFO-1234ze(z), HFO-1234ze(e) and HFO-1234zf) are developed to substitute for HFC-134a and CFC-114 in air-conditioning and high-temperature heat pump systems, respectively. The cycle performances were evaluated by an improved theoretical cy-cle evaluation methodology. The results showed that all the mixtures proposed herein were favorable refrigerants with excel-lent thermodynamic cycle performances. M1A presented lower discharge temperature and pressure ratio and higher COPc than that of HFC-134a. The volumetric cooling capacity was similar to HFC-134a. It can be served as a good environmentally friendly alternative to replace HFC-134a. M3H delivered similar discharge temperature as CFC-114 did. And the COPh was 3% higher. It exhibits excellent cycle performance in high-temperature heat pump and is a promising refrigerant to substitute for CFC-114. And the gliding temperature differences enable them to exhibit better coefficient of performance by matching the sink/source temperature in practice. Because the toxicity, flammability and other properties are not investigated in detail, ex-tensive toxicity and flammability testing needs to be conducted before they are used in a particular application.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50976079)Science and Technology Support Key Project of Tianjin (Grant No. 10ZCKFGX01700)
文摘With the increasing environmental concern on global warming, hydrofluoro-olefin (HFOs), possessing low GWP, has attracted great attention of many researchers recently. In this study, non-azeotropic mixtures composed of HFOs (HFO-1234yf, HFO-1234ze(z), HFO-1234ze(e) and HFO-1234zf) are developed to substitute for HFC-134a and CFC-114 in air-conditioning and high-temperature heat pump systems, respectively. The cycle performances were evaluated by an improved theoretical cy-cle evaluation methodology. The results showed that all the mixtures proposed herein were favorable refrigerants with excel-lent thermodynamic cycle performances. M1A presented lower discharge temperature and pressure ratio and higher COPc than that of HFC-134a. The volumetric cooling capacity was similar to HFC-134a. It can be served as a good environmentally friendly alternative to replace HFC-134a. M3H delivered similar discharge temperature as CFC-114 did. And the COPh was 3% higher. It exhibits excellent cycle performance in high-temperature heat pump and is a promising refrigerant to substitute for CFC-114. And the gliding temperature differences enable them to exhibit better coefficient of performance by matching the sink/source temperature in practice. Because the toxicity, flammability and other properties are not investigated in detail, ex-tensive toxicity and flammability testing needs to be conducted before they are used in a particular application.