The Wide-Sense Stationary Uncorrelated Scattering (WSSUS) model has long been viewed as a basic channel model to describe the fading dispersive channel. But non- WSSUS models have more universal applicability when t...The Wide-Sense Stationary Uncorrelated Scattering (WSSUS) model has long been viewed as a basic channel model to describe the fading dispersive channel. But non- WSSUS models have more universal applicability when the wireless mobile channel with broadband is studied with finer and more detailed knowledge of propagation environments. So the four-Dimension (4-D) characteristics of channel, namely time, lag, frequency, and Doppler, should be studied together. In this paper, Wigner-Ville distribution of Time-Frequency (TF) domain is introduced to analyze channel in which the incidence rays are non-stationary and correlated with each other. Several channel models, according to different move modes of incidence rays, with time-varying Doppler shift are designed and 4-D Local Scattering Function (LSF) are computed and simulated respectively. Our simulation results show the LSF present asymmetric and non-periodic TF distri- bution for some symmetric and periodic move modes of incidence rays.展开更多
Non Wide Sense Stationary Uncorrelated Scattering (Non-WSSUS) is one of characteristics for high-speed railway wireless channels. In this paper, estimation of Non-WSSUS Channel for OFDM Systems is considered by using ...Non Wide Sense Stationary Uncorrelated Scattering (Non-WSSUS) is one of characteristics for high-speed railway wireless channels. In this paper, estimation of Non-WSSUS Channel for OFDM Systems is considered by using Compressive Sensing (CS) method. Given sufficiently wide transmission bandwidth, wireless channels encountered here tend to exhibit a sparse multipath structure. Then a sparse Non-WSSUS channel estimation approach is proposed based on the delay-Doppler-spread function representation of the channel. This approach includes two steps. First, the delay-Doppler-spread function is estimated by the Compressive Sensing (CS) method utilizing the delay-Doppler basis. Then, the channel is tracked by a reduced order Kalman filter in the sparse delay-Doppler domain, and then estimated sequentially. Simulation results under LTE-R standard demonstrate that the proposed algorithm significantly improves the performance of channel estimation, comparing with the conventional Least Square (LS) and regular CS methods.展开更多
A novel non-geometrical stochastic model(NGSM)for non-wide sense station ary uncorrelated scattering(non-WSSUS)vehicle-to-vehicle(V2V)channels is proposed.This model is based on a conventional NGSM and employs a more ...A novel non-geometrical stochastic model(NGSM)for non-wide sense station ary uncorrelated scattering(non-WSSUS)vehicle-to-vehicle(V2V)channels is proposed.This model is based on a conventional NGSM and employs a more accurate method to reproduce the realistic characteristics of V2V channels,which successfully extends the existing NGSM to include the line-of-sight(LoS)component.Moreover,the statistical properties of the proposed model in different scenarios,including Doppler power spectral density(PSD),power delay profile(PDP),and the tap correlation coefficient matrix are simulated and compared with those of the existing NGSM.Furthermore,the simulation results dem onstrate not only the utility of the proposed model,but also the correctness of our theoreti cal derivations.展开更多
文摘The Wide-Sense Stationary Uncorrelated Scattering (WSSUS) model has long been viewed as a basic channel model to describe the fading dispersive channel. But non- WSSUS models have more universal applicability when the wireless mobile channel with broadband is studied with finer and more detailed knowledge of propagation environments. So the four-Dimension (4-D) characteristics of channel, namely time, lag, frequency, and Doppler, should be studied together. In this paper, Wigner-Ville distribution of Time-Frequency (TF) domain is introduced to analyze channel in which the incidence rays are non-stationary and correlated with each other. Several channel models, according to different move modes of incidence rays, with time-varying Doppler shift are designed and 4-D Local Scattering Function (LSF) are computed and simulated respectively. Our simulation results show the LSF present asymmetric and non-periodic TF distri- bution for some symmetric and periodic move modes of incidence rays.
文摘Non Wide Sense Stationary Uncorrelated Scattering (Non-WSSUS) is one of characteristics for high-speed railway wireless channels. In this paper, estimation of Non-WSSUS Channel for OFDM Systems is considered by using Compressive Sensing (CS) method. Given sufficiently wide transmission bandwidth, wireless channels encountered here tend to exhibit a sparse multipath structure. Then a sparse Non-WSSUS channel estimation approach is proposed based on the delay-Doppler-spread function representation of the channel. This approach includes two steps. First, the delay-Doppler-spread function is estimated by the Compressive Sensing (CS) method utilizing the delay-Doppler basis. Then, the channel is tracked by a reduced order Kalman filter in the sparse delay-Doppler domain, and then estimated sequentially. Simulation results under LTE-R standard demonstrate that the proposed algorithm significantly improves the performance of channel estimation, comparing with the conventional Least Square (LS) and regular CS methods.
基金supported by the Ministry National Key Research and Development Project under Grant No.2017YFE0121400the open research fund of Key Laboratory of Wireless Sensor Network&Communication under Grant No.2017003Shanghai Institute of Microsystem and Information Technology,and Chinese Academy of Sciences.
文摘A novel non-geometrical stochastic model(NGSM)for non-wide sense station ary uncorrelated scattering(non-WSSUS)vehicle-to-vehicle(V2V)channels is proposed.This model is based on a conventional NGSM and employs a more accurate method to reproduce the realistic characteristics of V2V channels,which successfully extends the existing NGSM to include the line-of-sight(LoS)component.Moreover,the statistical properties of the proposed model in different scenarios,including Doppler power spectral density(PSD),power delay profile(PDP),and the tap correlation coefficient matrix are simulated and compared with those of the existing NGSM.Furthermore,the simulation results dem onstrate not only the utility of the proposed model,but also the correctness of our theoreti cal derivations.