A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining eq...A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.展开更多
For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,...For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.展开更多
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe...In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.展开更多
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-...In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.展开更多
Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differenti...Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constr...Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constrained forces and Lagrangian, non-Noether symmetries and Lutzky conservative quantities are presented for nonholonomic nonconservative dynamical systems. The relation between non-Noether symmetry and Noether symmetry is discussed and it is further shown that non-Noether conservative quantities can be obtained by a complete set of Noether invariants. Finally, an example is given to illustrate these results.展开更多
This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new n...This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results.展开更多
A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduc...A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduce a new approach to look for the conserved laws.Two examples are presented.展开更多
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is disc...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.展开更多
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determ...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced.展开更多
A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the ...A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the determining equations of the special Mei symmetry, the constrained restriction equations, the additional restriction equations, and the definitions of the weak Mei symmetry and the strong Mei symmetry of the nonholonomic controllable mechanical system are given. The condition under which Mei symmetry is a Lie symmetry is obtained. The form of the Hojman conserved quantity of the corresponding holonomic mechanical system, the weak Hojman conserved quantity and the strong Hojman conserved quantity of the nonholonomie controllable mechanical system are obtained. An example is given to illustrate the application of the results.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19972010).
文摘A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.
基金国家自然科学基金,湖南省自然科学基金,the Scientific Research Foundation of Education Burean of Hunan Province
文摘For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13097)the Key Science and Technology Innovation Team Project of Zhejiang Province,China(Grant No.2013TD18)
文摘In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143, 10471145 and 10372053) and the Natural Science Foundation of Henan Province Government of China(Grant Nos 0511022200 and 0311011400).
文摘In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.
文摘Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No 10372053) and the Natural Science Foundation of Henan Province Government, China (Grant Nos 0311011400, 0511022200).
文摘Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constrained forces and Lagrangian, non-Noether symmetries and Lutzky conservative quantities are presented for nonholonomic nonconservative dynamical systems. The relation between non-Noether symmetry and Noether symmetry is discussed and it is further shown that non-Noether conservative quantities can be obtained by a complete set of Noether invariants. Finally, an example is given to illustrate these results.
文摘This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results.
基金National Natural Science Foundation of China under Grant Nos.10572021 and 10772025the Doctoral Programme Foundation of the Institute of Higher Education of China under Grant No.20040007022
文摘A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduce a new approach to look for the conserved laws.Two examples are presented.
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced.
基金supported by the Key Disciplines Building Foundation of Henan Institute of Education
文摘A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the determining equations of the special Mei symmetry, the constrained restriction equations, the additional restriction equations, and the definitions of the weak Mei symmetry and the strong Mei symmetry of the nonholonomic controllable mechanical system are given. The condition under which Mei symmetry is a Lie symmetry is obtained. The form of the Hojman conserved quantity of the corresponding holonomic mechanical system, the weak Hojman conserved quantity and the strong Hojman conserved quantity of the nonholonomie controllable mechanical system are obtained. An example is given to illustrate the application of the results.