期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Non-Noether conserved quantity for differential equations of motion in the phase space 被引量:10
1
作者 MEI FengxiangDepartment of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China 《Chinese Science Bulletin》 SCIE EI CAS 2002年第24期2049-2050,共2页
A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining eq... A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result. 展开更多
关键词 MECHANICAL system PHASE SPACE non-noether CONSERVED quantity.
原文传递
Noether Symmetry Can Lead to Non-Noether Conserved Quantity of Holonomic Nonconservative Systems in General Lie Transformations 被引量:4
2
作者 LUOShao-Kai JIALi-Qun CAIJian-Le 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期193-196,共4页
For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,... For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results. 展开更多
关键词 holonomic conservative system noether symmetry non-noether conservedquantity general inifinitesimal transformations of groups
下载PDF
Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives 被引量:3
3
作者 王琳莉 傅景礼 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期647-652,共6页
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe... In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. 展开更多
关键词 conformable fractional derivative Hamilton's canonical equation non-noether conserved quantity
下载PDF
A series of non-Noether conservative quantities and Mei symmetries of nonconservative systems 被引量:2
4
作者 刘鸿基 傅景礼 唐贻发 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第3期599-604,共6页
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-... In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry. 展开更多
关键词 Mei symmetry non-noether conservative quantity Lutzky conservative quantity nonconservative system
下载PDF
Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass 被引量:1
5
作者 QIAOYong-Fen LIRen-Jie MAYong-Sheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期197-200,共4页
Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differenti... Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result. 展开更多
关键词 analytical mechanics RELATIVITY nonholonomic system variable mass non-noether conserved quantity
下载PDF
Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems
6
作者 郑世旺 唐贻发 傅景礼 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期243-248,共6页
Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constr... Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constrained forces and Lagrangian, non-Noether symmetries and Lutzky conservative quantities are presented for nonholonomic nonconservative dynamical systems. The relation between non-Noether symmetry and Noether symmetry is discussed and it is further shown that non-Noether conservative quantities can be obtained by a complete set of Noether invariants. Finally, an example is given to illustrate these results. 展开更多
关键词 conserved quantity non-noether symmetry nonholonomic nonconservative system infinitesimal transformation
下载PDF
New non-Noether conserved quantities of mechanical system in phase space
7
作者 闫向红 方建会 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第10期2197-2201,共5页
This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new n... This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results. 展开更多
关键词 non-noether conserved quantity Lie symmetry form invariance phase space
下载PDF
Weak Noether Symmetry and non-Noether Conserved Quantities for General Holonomic Systems
8
作者 XIE Jia-Fang MEI Feng-Xiang GANG Tie-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期844-846,共3页
A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduc... A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduce a new approach to look for the conserved laws.Two examples are presented. 展开更多
关键词 weak noether symmetry non-noether conserved quantity general holonomic system
下载PDF
Non-Noether Conserved Quantity of Poincaré-Chetaev Equations of a Generalized Classical Mechanics 被引量:1
9
作者 ZHANG Peng-Yu FANG Jian-Hui WANG Peng DING Ning 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期961-964,共4页
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is disc... In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results. 展开更多
关键词 Poincaré-Chetaev equations generalized classical mechanics Lie symmetry non-noether conserved quantity
下载PDF
Lie Symmetrical Non-Noether Conserved Quantities of Poincaré-Chetaev Equations
10
作者 ZHANG Peng-Yu FANG Jian-Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2X期223-225,共3页
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determ... In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. 展开更多
关键词 Poincaré-Chetaev equations Lie symmetry non-noether conserved quantity
下载PDF
Mei Symmetry and Hojman Conserved Quantity of Nonholonomic Controllable Mechanical System
11
作者 XIA Li-Li LIYuan-Cheng ZHAO Xian-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第8期331-334,共4页
A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the ... A non-Noether conserved quantity, i.e., Hojman conserved quantity, constructed by using Mei symmetry for the nonholonomic controllable mechanical system, is presented. Under general infinitesimal transformations, the determining equations of the special Mei symmetry, the constrained restriction equations, the additional restriction equations, and the definitions of the weak Mei symmetry and the strong Mei symmetry of the nonholonomic controllable mechanical system are given. The condition under which Mei symmetry is a Lie symmetry is obtained. The form of the Hojman conserved quantity of the corresponding holonomic mechanical system, the weak Hojman conserved quantity and the strong Hojman conserved quantity of the nonholonomie controllable mechanical system are obtained. An example is given to illustrate the application of the results. 展开更多
关键词 nonholonomic controllable mechanical system non-noether conserved quantity Hojman con-served quantity
下载PDF
非完整力学系统的非Noether守恒量——Hojman守恒量 被引量:23
12
作者 罗绍凯 梅凤翔 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第3期666-670,共5页
研究非完整力学系统的非Noether守恒量———Hojman守恒量 .在时间不变的特殊Lie对称变换下 ,给出非完整力学系统的Lie对称性确定方程、约束限制方程和附加限制方程 ,得到相应完整系统的Hojman守恒量以及非完整系统的弱Hojman守恒量和强... 研究非完整力学系统的非Noether守恒量———Hojman守恒量 .在时间不变的特殊Lie对称变换下 ,给出非完整力学系统的Lie对称性确定方程、约束限制方程和附加限制方程 ,得到相应完整系统的Hojman守恒量以及非完整系统的弱Hojman守恒量和强Hojman守恒量 . 展开更多
关键词 分析力学 非完整系统 LIE对称性 noether守恒量 HOJMAN守恒量 对称变换 约束限制方程 附加限制方程
原文传递
非完整系统的Noether对称性与Hojman守恒量 被引量:15
13
作者 罗绍凯 郭永新 梅凤翔 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第5期1271-1275,共5页
研究非完整力学系统的Noether对称性导致的非Noether守恒量———Hojman守恒量 .在时间不变的特殊无限小变换下 ,给出系统的特殊Noether对称性与守恒量 ,并给出特殊Noether对称性导致特殊Lie对称性的条件 .由系统的特殊Noether对称性 ,... 研究非完整力学系统的Noether对称性导致的非Noether守恒量———Hojman守恒量 .在时间不变的特殊无限小变换下 ,给出系统的特殊Noether对称性与守恒量 ,并给出特殊Noether对称性导致特殊Lie对称性的条件 .由系统的特殊Noether对称性 ,得到相应完整系统的Hojman守恒量以及非完整系统的弱Hojman守恒量和强Hojman守恒量 .给出一个例子说明本结果的应用 . 展开更多
关键词 分析力学 非完整系统 noether对称性 noether守恒量 HOJMAN守恒量 广义坐标
原文传递
非保守系统广义Raitzin正则方程的形式不变性与非Noether守恒量 被引量:9
14
作者 乔永芬 赵淑红 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第2期499-503,共5页
研究非保守系统广义Raitzin正则方程的形式不变性与非Noether守恒量.列出系统的Raitzin正则方程.提出在无限小变换下系统形式不变性的定义和判据.给出系统的形式不变性是Lie对称性的充要条件.建立Hojman守恒定理,并举例说明结果的应用.
关键词 非保守系统 Raitzin正则方程 形式不变性 noether守恒量
原文传递
非保守Nielsen方程的形式不变性导致的非Noether守恒量 被引量:9
15
作者 许学军 梅凤翔 秦茂昌 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第12期4021-4025,共5页
研究非保守Nielsen方程由形式不变性直接导致的非Noether守恒量.函数对时间的全导数采用沿运动轨道曲 线的方式,给出非保守Nielsen方程的非点的形式不变性的定义和判据,并研究其Noether守恒量.得到形式不变性 导致非Noether守恒量... 研究非保守Nielsen方程由形式不变性直接导致的非Noether守恒量.函数对时间的全导数采用沿运动轨道曲 线的方式,给出非保守Nielsen方程的非点的形式不变性的定义和判据,并研究其Noether守恒量.得到形式不变性 导致非Noether守恒量的条件以及守恒量的形式,并给出三种特殊情形的推论.举例说明结果的应用. 展开更多
关键词 形式不变性 NIELSEN方程 noether守恒量 导数 运动轨道 判据 推论 特殊情形 保守 函数
原文传递
变质量力学系统的一般形式的非Noether守恒量 被引量:7
16
作者 方建会 廖永潘 张军 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第12期4037-4040,共4页
研究一般的无限小变换下变质量力学系统Lie对称性的非Noether守恒量,进一步推广Hojman定理.给出变 质量力学系统的一般形式的非Noether守恒量,并举例说明结果的应用.
关键词 noether守恒量 力学系统 变质量 一般形式 LIE对称性 无限小变换 定理 举例 推广 应用
原文传递
Birkhoff系统的一般Lie对称性和非Noether守恒量 被引量:7
17
作者 张宏彬 陈立群 顾书龙 《力学学报》 EI CSCD 北大核心 2004年第2期254-256,共3页
研究Birkhoff系统的一般Lie对称性导致的非Noether守恒量。得到非Noether守恒量的存在定理,举例说明结果的应用。
关键词 分析力学 BIRKHOFF系统 LIE对称性 noether守恒量 无限小变换
下载PDF
变质量非完整系统的非Noether守恒量 被引量:2
18
作者 赵淑红 乔永芬 马永胜 《江西师范大学学报(自然科学版)》 CAS 2004年第2期110-113,共4页
利用时间不变的无限小变化下的Lie对称性,研究变质量非完整力学系统的一类新的守恒量.给出系统的运动微分方程.研究时间不变的无限小变化下的Lie对称性确定方程.建立系统的Hojman守恒定理.举例说明结果的应用.
关键词 变质量非完整力学系统 noether守恒量 LIE对称性 确定方程 Hojman守恒定理 运动微分方程
下载PDF
Birkhoff系统Noether对称性导致的Hojman守恒量 被引量:1
19
作者 梅凤翔 许学军 秦茂昌 《浙江师范大学学报(自然科学版)》 CAS 2004年第3期217-220,共4页
提出由Birkhoff系统Noether对称性导出非Noether守恒量的方法.首先,证明系统Noether对称性必然是Lie对称性;其次,将Hojman定理应用于Noether对称性;最后,举例说明结果的应用.
关键词 noether对称性 BIRKHOFF系统 HOJMAN守恒量 LIE对称性 noether守恒量 证明 定理应用 举例 必然 方法
下载PDF
相对论性转动变质量非完整可控力学系统的非Noether守恒量 被引量:3
20
作者 夏丽莉 李元成 王显军 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第1期28-33,共6页
研究相对论性转动变质量非完整可控力学系统的非Noether守恒量——Hojman守恒量.建立了系统的运动微分方程,给出了系统在特殊无限小变换下的Mei对称性(形式不变性)和Lie对称性的定义和判据,以及系统的Mei对称性是Lie对称性的充分必要条... 研究相对论性转动变质量非完整可控力学系统的非Noether守恒量——Hojman守恒量.建立了系统的运动微分方程,给出了系统在特殊无限小变换下的Mei对称性(形式不变性)和Lie对称性的定义和判据,以及系统的Mei对称性是Lie对称性的充分必要条件.得到了系统Mei对称性导致非Noether守恒量的条件和具体形式.举例说明结果的应用. 展开更多
关键词 相对论性转动 可控力学系统 变质量 noether守恒量
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部