The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learnin...The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learning(FL).FL enables the distributed training of ML models,keeping data on local devices and thus addressing the privacy concerns of users.However,challenges arise from the heterogeneous nature of mobile client devices,partial engagement of training,and non-independent identically distributed(non-IID)data distribution,leading to performance degradation and optimization objective bias in FL training.With the development of 5G/6G networks and the integration of cloud computing edge computing resources,globally distributed cloud computing resources can be effectively utilized to optimize the FL process.Through the specific parameters of the server through the selection mechanism,it does not increase the monetary cost and reduces the network latency overhead,but also balances the objectives of communication optimization and low engagement mitigation that cannot be achieved simultaneously in a single-server framework of existing works.In this paper,we propose the FedAdaSS algorithm,an adaptive parameter server selection mechanism designed to optimize the training efficiency in each round of FL training by selecting the most appropriate server as the parameter server.Our approach leverages the flexibility of cloud resource computing power,and allows organizers to strategically select servers for data broadcasting and aggregation,thus improving training performance while maintaining cost efficiency.The FedAdaSS algorithm estimates the utility of client systems and servers and incorporates an adaptive random reshuffling strategy that selects the optimal server in each round of the training process.Theoretical analysis confirms the convergence of FedAdaSS under strong convexity and L-smooth assumptions,and comparative experiments within the FLSim framework demonstrate a reduction in training round-to-accuracy by 展开更多
Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurr...Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurrence of non-independent and identically distributed(non-IID)and long-tailed distribution in FL is one challenge that substantially degrades aggregate performance.In this paper,we present a corresponding solution called federated dual-decoupling via model and logit calibration(FedDDC)for non-IID and long-tailed distributions.The model is characterized by three aspects.First,we decouple the global model into the feature extractor and the classifier to fine-tune the components affected by the joint problem.For the biased feature extractor,we propose a client confidence re-weighting scheme to assist calibration,which assigns optimal weights to each client.For the biased classifier,we apply the classifier re-balancing method for fine-tuning.Then,we calibrate and integrate the client confidence re-weighted logits with the re-balanced logits to obtain the unbiased logits.Finally,we use decoupled knowledge distillation for the first time in the joint problem to enhance the accuracy of the global model by extracting the knowledge of the unbiased model.Numerous experiments demonstrate that on non-IID and long-tailed data in FL,our approach outperforms state-of-the-art methods.展开更多
As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improveme...As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines.展开更多
Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by d...Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.展开更多
Federated learning is a distributedmachine learningmethod that can solve the increasingly serious problemof data islands and user data privacy,as it allows training data to be kept locally and not shared with other us...Federated learning is a distributedmachine learningmethod that can solve the increasingly serious problemof data islands and user data privacy,as it allows training data to be kept locally and not shared with other users.It trains a globalmodel by aggregating locally-computedmodels of clients rather than their rawdata.However,the divergence of local models caused by data heterogeneity of different clients may lead to slow convergence of the global model.For this problem,we focus on the client selection with federated learning,which can affect the convergence performance of the global model with the selected local models.We propose FedChoice,a client selection method based on loss function optimization,to select appropriate local models to improve the convergence of the global model.It firstly sets selected probability for clients with the value of loss function,and the client with high loss will be set higher selected probability,which can make them more likely to participate in training.Then,it introduces a local control vector and a global control vector to predict the local gradient direction and global gradient direction,respectively,and calculates the gradient correction vector to correct the gradient direction to reduce the cumulative deviationof the local gradient causedby theNon-IIDdata.Wemake experiments to verify the validity of FedChoice on CIFAR-10,CINIC-10,MNIST,EMNITS,and FEMNIST datasets,and the results show that the convergence of FedChoice is significantly improved,compared with FedAvg,FedProx,and FedNova.展开更多
Distributed stochastic gradient descent and its variants have been widely adopted in the training of machine learning models,which apply multiple workers in parallel.Among them,local-based algorithms,including Local S...Distributed stochastic gradient descent and its variants have been widely adopted in the training of machine learning models,which apply multiple workers in parallel.Among them,local-based algorithms,including Local SGD and FedAvg,have gained much attention due to their superior properties,such as low communication cost and privacypreserving.Nevertheless,when the data distribution on workers is non-identical,local-based algorithms would encounter a significant degradation in the convergence rate.In this paper,we propose Variance Reduced Local SGD(VRL-SGD)to deal with the heterogeneous data.Without extra communication cost,VRL-SGD can reduce the gradient variance among workers caused by the heterogeneous data,and thus it prevents local-based algorithms from slow convergence rate.Moreover,we present VRL-SGD-W with an effectivewarm-up mechanism for the scenarios,where the data among workers are quite diverse.Benefiting from eliminating the impact of such heterogeneous data,we theoretically prove that VRL-SGD achieves a linear iteration speedup with lower communication complexity even if workers access non-identical datasets.We conduct experiments on three machine learning tasks.The experimental results demonstrate that VRL-SGD performs impressively better than Local SGD for the heterogeneous data and VRL-SGD-W is much robust under high data variance among workers.展开更多
Artificial intelligence(AI)models usually require large amounts of high-quality training data,which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines.The conce...Artificial intelligence(AI)models usually require large amounts of high-quality training data,which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines.The concept of federated learning has been proposed to utilize distributed data from different sources without leaking sensitive information of the data.This emerging decentralized machine learning paradigm is expected to dramatically improve the success rate of AI-powered drug discovery.Here,we simulated the federated learning process with different property and activity datasets from different sources,among which overlapping molecules with high or low biases exist in the recorded values.Beyond the benefit of gaining more data,we also demonstrated that federated training has a regularization effect superior to centralized training on the pooled datasets with high biases.Moreover,different network architectures for clients and aggregation algorithms for coordinators have been compared on the performance of federated learning,where personalized federated learning shows promising results.Our work demonstrates the applicability of federated learning in predicting drug-related properties and highlights its promising role in addressing the small and biased data dilemma in drug discovery.展开更多
Optical fiber pre-warning system (OFPS) is often used to monitor the occurrence of disasters such as the leakage of oil and natural gas pipeline. It analyzes the collected vibration signals to judge whether there is...Optical fiber pre-warning system (OFPS) is often used to monitor the occurrence of disasters such as the leakage of oil and natural gas pipeline. It analyzes the collected vibration signals to judge whether there is any harmful intrusion (HI) events. At present, the research in this field is mainly focused on the constant false alarm rate (CFAR) methods and derivative algorithms to detect intrusion signals. However, the performance of CFAR is often limited to the actual collected signals distribution. It is found that the background noise usually obeys non-independent and identically distribution (Non-liD) through the statistical analysis of acquisition signals. In view of the actual signal distribution characteristics, this paper presents a CFAR detection method based on the normalization processing for background noise. A high-pass filter is designed for the actual Non-liD background noise data to obtain the characterization characteristic. Then, the background noise is converted to independent and identically distribution (IID) by using the data characteristic. Next, the collected data after normalization is processed with efficient cell average constant false alarm rate (CA-CFAR) method for detection. Finally, the results of experiments both show that the intrusion signals can be effectively detected, and the effectiveness of the algorithm is verified.展开更多
The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized...The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.展开更多
Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all parties.Howe...Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all parties.However,when dealing with non-independently identically distributed(non-ⅡD) client data,FL cannot obtain more satisfactory results than centrally trained machine learning and even fails to match the accuracy of the local model obtained by client training alone.To analyze and address the above issues,we survey the state-of-theart methods in the literature related to FL on non-ⅡD data.On this basis,a motivation-based taxonomy,which classifies these methods into two categories,including heterogeneity reducing strategies and adaptability enhancing strategies,is proposed.Moreover,the core ideas and main challenges of these methods are analyzed.Finally,we envision several promising research directions that have not been thoroughly studied,in hope of promoting research in related fields to a certain extent.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant U22B2005,Grant 62372462.
文摘The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learning(FL).FL enables the distributed training of ML models,keeping data on local devices and thus addressing the privacy concerns of users.However,challenges arise from the heterogeneous nature of mobile client devices,partial engagement of training,and non-independent identically distributed(non-IID)data distribution,leading to performance degradation and optimization objective bias in FL training.With the development of 5G/6G networks and the integration of cloud computing edge computing resources,globally distributed cloud computing resources can be effectively utilized to optimize the FL process.Through the specific parameters of the server through the selection mechanism,it does not increase the monetary cost and reduces the network latency overhead,but also balances the objectives of communication optimization and low engagement mitigation that cannot be achieved simultaneously in a single-server framework of existing works.In this paper,we propose the FedAdaSS algorithm,an adaptive parameter server selection mechanism designed to optimize the training efficiency in each round of FL training by selecting the most appropriate server as the parameter server.Our approach leverages the flexibility of cloud resource computing power,and allows organizers to strategically select servers for data broadcasting and aggregation,thus improving training performance while maintaining cost efficiency.The FedAdaSS algorithm estimates the utility of client systems and servers and incorporates an adaptive random reshuffling strategy that selects the optimal server in each round of the training process.Theoretical analysis confirms the convergence of FedAdaSS under strong convexity and L-smooth assumptions,and comparative experiments within the FLSim framework demonstrate a reduction in training round-to-accuracy by
基金supported by the National Natural Science Foundation of China(No.61702321)。
文摘Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurrence of non-independent and identically distributed(non-IID)and long-tailed distribution in FL is one challenge that substantially degrades aggregate performance.In this paper,we present a corresponding solution called federated dual-decoupling via model and logit calibration(FedDDC)for non-IID and long-tailed distributions.The model is characterized by three aspects.First,we decouple the global model into the feature extractor and the classifier to fine-tune the components affected by the joint problem.For the biased feature extractor,we propose a client confidence re-weighting scheme to assist calibration,which assigns optimal weights to each client.For the biased classifier,we apply the classifier re-balancing method for fine-tuning.Then,we calibrate and integrate the client confidence re-weighted logits with the re-balanced logits to obtain the unbiased logits.Finally,we use decoupled knowledge distillation for the first time in the joint problem to enhance the accuracy of the global model by extracting the knowledge of the unbiased model.Numerous experiments demonstrate that on non-IID and long-tailed data in FL,our approach outperforms state-of-the-art methods.
基金National Natural Science Foundation of China,Grant/Award Number:62272114Joint Research Fund of Guangzhou and University,Grant/Award Number:202201020380+3 种基金Guangdong Higher Education Innovation Group,Grant/Award Number:2020KCXTD007Pearl River Scholars Funding Program of Guangdong Universities(2019)National Key R&D Program of China,Grant/Award Number:2022ZD0119602Major Key Project of PCL,Grant/Award Number:PCL2022A03。
文摘As the scale of federated learning expands,solving the Non-IID data problem of federated learning has become a key challenge of interest.Most existing solutions generally aim to solve the overall performance improvement of all clients;however,the overall performance improvement often sacrifices the performance of certain clients,such as clients with less data.Ignoring fairness may greatly reduce the willingness of some clients to participate in federated learning.In order to solve the above problem,the authors propose Ada-FFL,an adaptive fairness federated aggregation learning algorithm,which can dynamically adjust the fairness coefficient according to the update of the local models,ensuring the convergence performance of the global model and the fairness between federated learning clients.By integrating coarse-grained and fine-grained equity solutions,the authors evaluate the deviation of local models by considering both global equity and individual equity,then the weight ratio will be dynamically allocated for each client based on the evaluated deviation value,which can ensure that the update differences of local models are fully considered in each round of training.Finally,by combining a regularisation term to limit the local model update to be closer to the global model,the sensitivity of the model to input perturbations can be reduced,and the generalisation ability of the global model can be improved.Through numerous experiments on several federal data sets,the authors show that our method has more advantages in convergence effect and fairness than the existing baselines.
基金This work was supported by the National Key R&D Program of China under Grant 2023YFB2703802the Hunan Province Innovation and Entrepreneurship Training Program for College Students S202311528073.
文摘Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.
基金supported by the National Natural Science Foundation of China under Grant No.62072146The Key Research and Development Program of Zhejiang Province under Grant No.2021C03187+1 种基金National Key Research and Development Program of China 2019YFB2102100The State Key Laboratory of Computer Architecture(ICT,CAS)under Grant No.CARCHB202120.
文摘Federated learning is a distributedmachine learningmethod that can solve the increasingly serious problemof data islands and user data privacy,as it allows training data to be kept locally and not shared with other users.It trains a globalmodel by aggregating locally-computedmodels of clients rather than their rawdata.However,the divergence of local models caused by data heterogeneity of different clients may lead to slow convergence of the global model.For this problem,we focus on the client selection with federated learning,which can affect the convergence performance of the global model with the selected local models.We propose FedChoice,a client selection method based on loss function optimization,to select appropriate local models to improve the convergence of the global model.It firstly sets selected probability for clients with the value of loss function,and the client with high loss will be set higher selected probability,which can make them more likely to participate in training.Then,it introduces a local control vector and a global control vector to predict the local gradient direction and global gradient direction,respectively,and calculates the gradient correction vector to correct the gradient direction to reduce the cumulative deviationof the local gradient causedby theNon-IIDdata.Wemake experiments to verify the validity of FedChoice on CIFAR-10,CINIC-10,MNIST,EMNITS,and FEMNIST datasets,and the results show that the convergence of FedChoice is significantly improved,compared with FedAvg,FedProx,and FedNova.
基金This research was partially supported by grants from the National Key Research and Development Program of China(No.2018YFC0832101)the National Natural Science Foundation of China(Grant Nos.U20A20229 and 61922073).
文摘Distributed stochastic gradient descent and its variants have been widely adopted in the training of machine learning models,which apply multiple workers in parallel.Among them,local-based algorithms,including Local SGD and FedAvg,have gained much attention due to their superior properties,such as low communication cost and privacypreserving.Nevertheless,when the data distribution on workers is non-identical,local-based algorithms would encounter a significant degradation in the convergence rate.In this paper,we propose Variance Reduced Local SGD(VRL-SGD)to deal with the heterogeneous data.Without extra communication cost,VRL-SGD can reduce the gradient variance among workers caused by the heterogeneous data,and thus it prevents local-based algorithms from slow convergence rate.Moreover,we present VRL-SGD-W with an effectivewarm-up mechanism for the scenarios,where the data among workers are quite diverse.Benefiting from eliminating the impact of such heterogeneous data,we theoretically prove that VRL-SGD achieves a linear iteration speedup with lower communication complexity even if workers access non-identical datasets.We conduct experiments on three machine learning tasks.The experimental results demonstrate that VRL-SGD performs impressively better than Local SGD for the heterogeneous data and VRL-SGD-W is much robust under high data variance among workers.
基金supported by the Shanghai Municipal Science and Technology Major Projectthe National Natural Science Foundation of China(81773634)+1 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(2018ZX09711002)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA12050201 and XDA12020368)。
文摘Artificial intelligence(AI)models usually require large amounts of high-quality training data,which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines.The concept of federated learning has been proposed to utilize distributed data from different sources without leaking sensitive information of the data.This emerging decentralized machine learning paradigm is expected to dramatically improve the success rate of AI-powered drug discovery.Here,we simulated the federated learning process with different property and activity datasets from different sources,among which overlapping molecules with high or low biases exist in the recorded values.Beyond the benefit of gaining more data,we also demonstrated that federated training has a regularization effect superior to centralized training on the pooled datasets with high biases.Moreover,different network architectures for clients and aggregation algorithms for coordinators have been compared on the performance of federated learning,where personalized federated learning shows promising results.Our work demonstrates the applicability of federated learning in predicting drug-related properties and highlights its promising role in addressing the small and biased data dilemma in drug discovery.
文摘Optical fiber pre-warning system (OFPS) is often used to monitor the occurrence of disasters such as the leakage of oil and natural gas pipeline. It analyzes the collected vibration signals to judge whether there is any harmful intrusion (HI) events. At present, the research in this field is mainly focused on the constant false alarm rate (CFAR) methods and derivative algorithms to detect intrusion signals. However, the performance of CFAR is often limited to the actual collected signals distribution. It is found that the background noise usually obeys non-independent and identically distribution (Non-liD) through the statistical analysis of acquisition signals. In view of the actual signal distribution characteristics, this paper presents a CFAR detection method based on the normalization processing for background noise. A high-pass filter is designed for the actual Non-liD background noise data to obtain the characterization characteristic. Then, the background noise is converted to independent and identically distribution (IID) by using the data characteristic. Next, the collected data after normalization is processed with efficient cell average constant false alarm rate (CA-CFAR) method for detection. Finally, the results of experiments both show that the intrusion signals can be effectively detected, and the effectiveness of the algorithm is verified.
基金the General Program of National Natural Science Foundation of China(62072049).
文摘The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.
文摘Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all parties.However,when dealing with non-independently identically distributed(non-ⅡD) client data,FL cannot obtain more satisfactory results than centrally trained machine learning and even fails to match the accuracy of the local model obtained by client training alone.To analyze and address the above issues,we survey the state-of-theart methods in the literature related to FL on non-ⅡD data.On this basis,a motivation-based taxonomy,which classifies these methods into two categories,including heterogeneity reducing strategies and adaptability enhancing strategies,is proposed.Moreover,the core ideas and main challenges of these methods are analyzed.Finally,we envision several promising research directions that have not been thoroughly studied,in hope of promoting research in related fields to a certain extent.