混合分数概率密度函数(probability density function,PDF)反映了湍流对燃料和氧化剂混合过程的影响,在湍流非预混燃烧的理论研究和数值模拟中有非常重要的作用。该文基于大涡模拟(large eddy simulation,LES)对非预混火焰中的混合分数...混合分数概率密度函数(probability density function,PDF)反映了湍流对燃料和氧化剂混合过程的影响,在湍流非预混燃烧的理论研究和数值模拟中有非常重要的作用。该文基于大涡模拟(large eddy simulation,LES)对非预混火焰中的混合分数PDF进行了研究。利用LES预测的SandiaFlame D的速度和温度的均值和均方根分布与实验结果符合很好,瞬态温度场显示了合理的湍流火焰形态。混合分数PDF在反应区为钟形分布,在贫燃侧和富燃侧为钟形分布或单调形分布,取决于当地流场状态。对简化PDF模型的研究表明:β函数模型对钟形PDF和单调形PDF的预测效果都很好;截尾Gauss函数模型只能较好地预测钟形分布PDF;多点δ函数模型的预测能力与截尾Gauss函数模型的预测能力类似;双δ函数模型的预测结果偏差较大。展开更多
This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison ...This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison of flames in bluff-body stabilized burners with and without swirl is presented. The results of the experiments present the variations of bluff-body stabilized flame when swirl is added into burner: the maximum reverse flow velocity and the maximum mean average radial velocity decrease; the maximum radial rootmean squared fluctuating (rms) velocity increases; the values of the axial velocity peak on the side of nozzle axis are lower, and the distance between the peak and centerline is bigger; the location of the maximum radial rms velocity moves to the outlet of annular air-flow from central recirculation zone (CRZ). Then, the comparison of flames in swirl burners with and without bluff-body is provided. The results of the experiments show the changes of swirling flame when bluff-body is added into swirl burner: the air vortex in the CRZ moves to the burner; the peak values of axial mean and rms velocity decrease; the distance between centerline and the mean axial and rms velocity peak increase; the peak of mean radial velocity decreases, and the peak of rms raidial velocity increase. The data from this experiment can also be established as benchmarks for the development and validation of combustion numerical simulations.展开更多
通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流...通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流–化学相互作用的影响。研究结果表明,不同稀释剂下炉内流动和烟气卷吸情况几乎相同,但在炉内反应方面存在较大差异。各稀释剂下炉内燃烧温度和CO、OH浓度的高低顺序为:N_(2)>CO_(2)>H_(2)O。而且,N_(2)稀释时炉内存在集中的高温区(>1800K),且温度和组分浓度随氧浓度增大而快速升高。而CO_(2)或H_(2)O稀释时炉内温度、组分分布均匀,且对氧浓度变化不敏感。另外,相比CO_(2)或H_(2)O稀释,N_(2)稀释下反应区内的层流火焰速度和Damköhler数(Da)更大,且随氧浓度的升高而急剧增加,30%氧浓度下已经进入传统薄反应区燃烧模式。而CO_(2)或H_(2)O的稀释可以显著降低层流火焰速度,增长化学反应时间,减小Da数,在高氧浓度下依旧保持在分布式反应区,即MILD燃烧区。因此,相比N_(2)稀释,CO_(2)或H_(2)O稀释下更有利于建立MILD富氧燃烧。展开更多
对C3H8/空气在弯管燃烧器中的非预混湍流燃烧进行数值模拟,湍流模型采用RNGk-ε模型,燃烧模型采用守恒标量的概率密度函数(probability density function,PDF)模型,辐射模型为离散坐标(discrete ordinate,DO)模型,压力和速度项的耦合采...对C3H8/空气在弯管燃烧器中的非预混湍流燃烧进行数值模拟,湍流模型采用RNGk-ε模型,燃烧模型采用守恒标量的概率密度函数(probability density function,PDF)模型,辐射模型为离散坐标(discrete ordinate,DO)模型,压力和速度项的耦合采用SIMPLE算法.在燃料丙烷入口速度不变的情况下,改变空气入口的速度,进行5种工况的模拟.模拟结果表明:随着入口空气速度的增大,燃料和氧化剂分子混合更均匀,燃烧速率升高,燃料浓度迅速减小,温度场高温区提前,火焰空间速度场整体速度增加,湍流强度增强,径向压力梯度增大.由此,可以通过控制空气入口的速度,控制火焰空间速度场速度的大小以及燃烧进行的程度.考虑到提高燃烧效率的问题,在保证燃料充分燃烧的情况下,尽量减少空气入口的速度,以达到工业目的.展开更多
A numerical study of the counterflow diffusion flames of methane/air at both subcritical and supercritical pressures,which have very important applications in the air-breathing rocket and advanced gas turbine engines,...A numerical study of the counterflow diffusion flames of methane/air at both subcritical and supercritical pressures,which have very important applications in the air-breathing rocket and advanced gas turbine engines,is conducted to obtain fundamental understanding of the flame characteristics.The analysis is based on a general mathematical formulation and accommodates a unified treatment of general fluids thermodynamics and accurate calculations of thermophysical properties.Results reveal that the maximum flame temperature occurs on the fuel-rich side for low-pressure conditions and shifts toward the stoichiometric position when the pressure increases.The maximum flame temperature increases with an increasing pressure,but decreases with an increasing strain rate.The flame width is inversely proportional to the square root of the product of the pressure and strain rate as■■1 p·a2/1.The total heat release rate varies with the pressure and strain rate in a relationship of Q release ■(p·a)0.518.An increased pressure leads to a slightly more complete combustion process near the stoichiometric position,but its effect on NO production is minor.Under the test conditions,variations of the strain rate have significant impacts on the formation of major pollutants.An increased strain rate leads to the decreased mole fraction of CO in the fuel-rich region and significantly reduced NO near the stoichiometric position.展开更多
CH_(4)/DME mixtures can be used for engines and gas turbines,and have already been studied for many years.However,DME has a strong cool flame phenomenon,which will greatly influence the ignition and combustion charact...CH_(4)/DME mixtures can be used for engines and gas turbines,and have already been studied for many years.However,DME has a strong cool flame phenomenon,which will greatly influence the ignition and combustion characteristics of following hot flames.Therefore,the cool flame characteristics of CH_(4)/DME mixture are very important for their utilization.Recently,the inhibition effect of CH_(4)on DME cool flames has been discovered,but the mechanisms of the inhibition effects lack further verification and research.In this study,the inhibition effects were investigated via both experiments and simulations.In order to validate the inhibition effects,a comparison fuel of CH_(3)OH/DME was also used in this study.The extinction limits,flame temperatures and combustion products of the cool flames of the CH_(4)/DME and CH_(3)OH/DME mixtures were measured using a counterflow burner,and the reaction paths and heat release rate were derived from the HPMech-v3.3.The results indicate that CH_(4)and CH_(3)OH will both inhibit the cool flame of DME via competing with DME for OH and O radicals,and CH_(3)OH has stronger inhibition effects than CH_(4),because it is more competitive and produces more CH2O,which inhibits the oxidation of DME.The HPMech-v3.3 closely agrees with the experimental data,but still needs to be improved.展开更多
Flamelet Generated Manifold(FGM)is an example of a chemistry tabulation or a flamelet method that is under attention because of its accuracy and speed in predicting combustion characteristics.However,the main problem ...Flamelet Generated Manifold(FGM)is an example of a chemistry tabulation or a flamelet method that is under attention because of its accuracy and speed in predicting combustion characteristics.However,the main problem in applying the model is a large amount of memory required.One way to solve this problem is to apply machine learning(ML)to replace the stored tabulated data.Four different machine learning methods,including two Artificial Neural Networks(ANNs),a Random Forest(RF),and a Gradient Boosted Trees(GBT),are trained,validated,and compared in terms of various performance measures.The progress variable source term and transport properties are replaced with the ML models.Particular attention was paid to the progress variable source term due to its high gradient and wide range of its value in the control variables space.Data preprocessing is shown to play an essential role in improving the performance of the models.Two ensemble models,namely RF and GBT,exhibit high training efficiency and acceptable accuracy.On the other hand,the ANN models have lower training errors and take longer to train.The four models are then combined with a one-dimensional combustion code to simulate a counterflow non-premixed diffusion flame in engine-relevant conditions.The predictions of the ML-FGM models are compared with detailed chemical simulations and the original FGM model for key combustion properties and representative species profiles.展开更多
Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, grow...Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and de- struction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-c and the Rey- nolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but inde- pendent on the surface area of soot particles,f(As) = pNs, yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f (As) = As and f (A,) = √As, result in an un- der-prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth.展开更多
Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on t...Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s.展开更多
In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derive...In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations(L. Wang, Combust. Flame 175, 259(2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided;meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach.展开更多
The main objective of this article was to experimentally investigate the dynamic response of diffusion flame under acoustic excitation in a laboratory-scale burner.Two parametric variations of the burner,the burner in...The main objective of this article was to experimentally investigate the dynamic response of diffusion flame under acoustic excitation in a laboratory-scale burner.Two parametric variations of the burner,the burner inlet length and variation of the airflow rate,were studied.Experimental results were analyzed through nonlinear time series analysis and several resonance characteristics were obtained.Results indicate that the flame-acoustic resonance only appears under certain frequencies together with the fuel tube vibration.Resonance characteristics of the combustion chamber and air inlet in the non-premixed burner indicate quasi-periodic or limit cycle oscillations,respectively.Flame-acoustic resonance would trigger the frequency and amplitude mode-transition in burners.Moreover,the intermittency of flame heat release was observed under variation of inlet length and airflow rate in the burner;the 445 mm case shows more frequency peaks and fluctuations than the 245 mm one.Four typical flame forms were examined during the flame-acoustic resonance conditions,evolves from wrinkled flames to diverged flames,then evolves to reattached flames and finally to blow-off flames.This study proposed the practical application of nonlinear time-series analysis method as a detection tool for flame-acoustic resonance in laboratory non-premixed burners,which could contribute to the detection and prevention of potential thermoacoustic instabilities or resonance structure failures of industrial boilers.Finally,this study demonstrates an alternative to conventional linear tool for the characterization of nonlinear acoustic resonance in industrial boilers.展开更多
This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistr...This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.展开更多
Based on the working characteristics of the rotating detonation combustor,the combustion mode of C_(2)H_(4)-Air under non-premixed injection conditions is experimentally studied in this paper.By changing the equivalen...Based on the working characteristics of the rotating detonation combustor,the combustion mode of C_(2)H_(4)-Air under non-premixed injection conditions is experimentally studied in this paper.By changing the equivalence ratio,we observed the acoustic deflagration mode,fast deflagration mode,stable detonation mode,and weak detonation mode in the combustor.The velocity and pressure of the shock wave increase gradually as the equivalence ratio increases from 0.6 to 1.8.The stable detonation region appears near the stoichiometric ratio and the velocity of the detonation wave is relatively stable.When the equivalence ratio of the mixture is larger than 1.32,the stable detonation wave will suddenly extinguish,forming a weak detonation mode until the end of the combustor operation.The combustion mode of weak detonation is greatly affected by the fuel injection pressure ratio,and the release rate of energy is the main reason for the formation of deflagration mode or detonation mode.展开更多
This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress mod...This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.展开更多
基金supported by National Basic Research Program of China (973 Program).No.2007CB210102
文摘This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison of flames in bluff-body stabilized burners with and without swirl is presented. The results of the experiments present the variations of bluff-body stabilized flame when swirl is added into burner: the maximum reverse flow velocity and the maximum mean average radial velocity decrease; the maximum radial rootmean squared fluctuating (rms) velocity increases; the values of the axial velocity peak on the side of nozzle axis are lower, and the distance between the peak and centerline is bigger; the location of the maximum radial rms velocity moves to the outlet of annular air-flow from central recirculation zone (CRZ). Then, the comparison of flames in swirl burners with and without bluff-body is provided. The results of the experiments show the changes of swirling flame when bluff-body is added into swirl burner: the air vortex in the CRZ moves to the burner; the peak values of axial mean and rms velocity decrease; the distance between centerline and the mean axial and rms velocity peak increase; the peak of mean radial velocity decreases, and the peak of rms raidial velocity increase. The data from this experiment can also be established as benchmarks for the development and validation of combustion numerical simulations.
文摘通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流–化学相互作用的影响。研究结果表明,不同稀释剂下炉内流动和烟气卷吸情况几乎相同,但在炉内反应方面存在较大差异。各稀释剂下炉内燃烧温度和CO、OH浓度的高低顺序为:N_(2)>CO_(2)>H_(2)O。而且,N_(2)稀释时炉内存在集中的高温区(>1800K),且温度和组分浓度随氧浓度增大而快速升高。而CO_(2)或H_(2)O稀释时炉内温度、组分分布均匀,且对氧浓度变化不敏感。另外,相比CO_(2)或H_(2)O稀释,N_(2)稀释下反应区内的层流火焰速度和Damköhler数(Da)更大,且随氧浓度的升高而急剧增加,30%氧浓度下已经进入传统薄反应区燃烧模式。而CO_(2)或H_(2)O的稀释可以显著降低层流火焰速度,增长化学反应时间,减小Da数,在高氧浓度下依旧保持在分布式反应区,即MILD燃烧区。因此,相比N_(2)稀释,CO_(2)或H_(2)O稀释下更有利于建立MILD富氧燃烧。
文摘对C3H8/空气在弯管燃烧器中的非预混湍流燃烧进行数值模拟,湍流模型采用RNGk-ε模型,燃烧模型采用守恒标量的概率密度函数(probability density function,PDF)模型,辐射模型为离散坐标(discrete ordinate,DO)模型,压力和速度项的耦合采用SIMPLE算法.在燃料丙烷入口速度不变的情况下,改变空气入口的速度,进行5种工况的模拟.模拟结果表明:随着入口空气速度的增大,燃料和氧化剂分子混合更均匀,燃烧速率升高,燃料浓度迅速减小,温度场高温区提前,火焰空间速度场整体速度增加,湍流强度增强,径向压力梯度增大.由此,可以通过控制空气入口的速度,控制火焰空间速度场速度的大小以及燃烧进行的程度.考虑到提高燃烧效率的问题,在保证燃料充分燃烧的情况下,尽量减少空气入口的速度,以达到工业目的.
基金supported by the National Natural Science Foundation of China(Grant No.11372277)
文摘A numerical study of the counterflow diffusion flames of methane/air at both subcritical and supercritical pressures,which have very important applications in the air-breathing rocket and advanced gas turbine engines,is conducted to obtain fundamental understanding of the flame characteristics.The analysis is based on a general mathematical formulation and accommodates a unified treatment of general fluids thermodynamics and accurate calculations of thermophysical properties.Results reveal that the maximum flame temperature occurs on the fuel-rich side for low-pressure conditions and shifts toward the stoichiometric position when the pressure increases.The maximum flame temperature increases with an increasing pressure,but decreases with an increasing strain rate.The flame width is inversely proportional to the square root of the product of the pressure and strain rate as■■1 p·a2/1.The total heat release rate varies with the pressure and strain rate in a relationship of Q release ■(p·a)0.518.An increased pressure leads to a slightly more complete combustion process near the stoichiometric position,but its effect on NO production is minor.Under the test conditions,variations of the strain rate have significant impacts on the formation of major pollutants.An increased strain rate leads to the decreased mole fraction of CO in the fuel-rich region and significantly reduced NO near the stoichiometric position.
基金The authors gratefully acknowledge the support from the National Key R&D Program of China(2016YFB0600100)the Fundamental Research Funds for the Central Universities(30919012104).
文摘CH_(4)/DME mixtures can be used for engines and gas turbines,and have already been studied for many years.However,DME has a strong cool flame phenomenon,which will greatly influence the ignition and combustion characteristics of following hot flames.Therefore,the cool flame characteristics of CH_(4)/DME mixture are very important for their utilization.Recently,the inhibition effect of CH_(4)on DME cool flames has been discovered,but the mechanisms of the inhibition effects lack further verification and research.In this study,the inhibition effects were investigated via both experiments and simulations.In order to validate the inhibition effects,a comparison fuel of CH_(3)OH/DME was also used in this study.The extinction limits,flame temperatures and combustion products of the cool flames of the CH_(4)/DME and CH_(3)OH/DME mixtures were measured using a counterflow burner,and the reaction paths and heat release rate were derived from the HPMech-v3.3.The results indicate that CH_(4)and CH_(3)OH will both inhibit the cool flame of DME via competing with DME for OH and O radicals,and CH_(3)OH has stronger inhibition effects than CH_(4),because it is more competitive and produces more CH2O,which inhibits the oxidation of DME.The HPMech-v3.3 closely agrees with the experimental data,but still needs to be improved.
基金This work was funded by the Netherlands Organisation for Scientific Research(NWO,project number 14927).
文摘Flamelet Generated Manifold(FGM)is an example of a chemistry tabulation or a flamelet method that is under attention because of its accuracy and speed in predicting combustion characteristics.However,the main problem in applying the model is a large amount of memory required.One way to solve this problem is to apply machine learning(ML)to replace the stored tabulated data.Four different machine learning methods,including two Artificial Neural Networks(ANNs),a Random Forest(RF),and a Gradient Boosted Trees(GBT),are trained,validated,and compared in terms of various performance measures.The progress variable source term and transport properties are replaced with the ML models.Particular attention was paid to the progress variable source term due to its high gradient and wide range of its value in the control variables space.Data preprocessing is shown to play an essential role in improving the performance of the models.Two ensemble models,namely RF and GBT,exhibit high training efficiency and acceptable accuracy.On the other hand,the ANN models have lower training errors and take longer to train.The four models are then combined with a one-dimensional combustion code to simulate a counterflow non-premixed diffusion flame in engine-relevant conditions.The predictions of the ML-FGM models are compared with detailed chemical simulations and the original FGM model for key combustion properties and representative species profiles.
基金financeally supported by Syiah Kuala University,Banda Aceh,Indonesia described through H-Index Research Scheme,Contract No:1445/UN 11/SP/PNBP/2017
文摘Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and de- struction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-c and the Rey- nolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but inde- pendent on the surface area of soot particles,f(As) = pNs, yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f (As) = As and f (A,) = √As, result in an un- der-prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth.
文摘Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s.
基金the National Natural Science Foundation of China(Grant No.11572330)the support from the Engineering Research Center of Gas Turbine and Civil Aero Engine,Ministry of Education of China+1 种基金the support from International Clean Energy Talent Program by China Scholarship Council(Grant No.201904100044)Open founding of National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics of China(Grant No.6142702180307).
文摘In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations(L. Wang, Combust. Flame 175, 259(2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided;meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach.
基金supported by National Science Fund for Distinguished Young Scholars(51825605)。
文摘The main objective of this article was to experimentally investigate the dynamic response of diffusion flame under acoustic excitation in a laboratory-scale burner.Two parametric variations of the burner,the burner inlet length and variation of the airflow rate,were studied.Experimental results were analyzed through nonlinear time series analysis and several resonance characteristics were obtained.Results indicate that the flame-acoustic resonance only appears under certain frequencies together with the fuel tube vibration.Resonance characteristics of the combustion chamber and air inlet in the non-premixed burner indicate quasi-periodic or limit cycle oscillations,respectively.Flame-acoustic resonance would trigger the frequency and amplitude mode-transition in burners.Moreover,the intermittency of flame heat release was observed under variation of inlet length and airflow rate in the burner;the 445 mm case shows more frequency peaks and fluctuations than the 245 mm one.Four typical flame forms were examined during the flame-acoustic resonance conditions,evolves from wrinkled flames to diverged flames,then evolves to reattached flames and finally to blow-off flames.This study proposed the practical application of nonlinear time-series analysis method as a detection tool for flame-acoustic resonance in laboratory non-premixed burners,which could contribute to the detection and prevention of potential thermoacoustic instabilities or resonance structure failures of industrial boilers.Finally,this study demonstrates an alternative to conventional linear tool for the characterization of nonlinear acoustic resonance in industrial boilers.
基金Supported by Ministry of National Education,Republic of Indonesia No.433/SP2H/PP/DP2M/VI/2010
文摘This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.
基金The authors express sincere gratitude to the project fun-ded by China Postdoctoral Science Foundation(NO.BX20200070)the National Natural Science Founda-tion of China(No.12072163)for funding this study.
文摘Based on the working characteristics of the rotating detonation combustor,the combustion mode of C_(2)H_(4)-Air under non-premixed injection conditions is experimentally studied in this paper.By changing the equivalence ratio,we observed the acoustic deflagration mode,fast deflagration mode,stable detonation mode,and weak detonation mode in the combustor.The velocity and pressure of the shock wave increase gradually as the equivalence ratio increases from 0.6 to 1.8.The stable detonation region appears near the stoichiometric ratio and the velocity of the detonation wave is relatively stable.When the equivalence ratio of the mixture is larger than 1.32,the stable detonation wave will suddenly extinguish,forming a weak detonation mode until the end of the combustor operation.The combustion mode of weak detonation is greatly affected by the fuel injection pressure ratio,and the release rate of energy is the main reason for the formation of deflagration mode or detonation mode.
基金the provided funding resources by Mohsen Saffari Pour from the National Elites Foundation of IranStiftelsen Axel Hultgerns of Sweden for supporting this research。
文摘This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.