定量分析识别复杂网络中的重要节点对于研究复杂网络鲁棒性和脆弱性意义重大,当前基于网络结构的节点重要性评估方法成果丰富,而基于复杂网络动力学模型的节点重要性评估方法较少.针对无向加权网络,本文首先提出了构建其对应的复杂网络...定量分析识别复杂网络中的重要节点对于研究复杂网络鲁棒性和脆弱性意义重大,当前基于网络结构的节点重要性评估方法成果丰富,而基于复杂网络动力学模型的节点重要性评估方法较少.针对无向加权网络,本文首先提出了构建其对应的复杂网络动力学模型的方法,并证明了该类复杂网络动力学模型是大范围内一致渐近稳定的;然后建立了复杂网络动力学模型的偏离均值和基于偏离均值的方差两级节点重要性评估标准;最后给出了扰动测试和破坏测试两种基于复杂网络动力学模型的节点重要性评估方法.基于复杂网络动力学模型的节点重要性评估方法不仅结合了网络拓扑结构信息,同时又结合了节点自身的特性,所以评价结果更为全面.将这两种方法用于ARPA(advanced research project agency)网络、对称无向加权网络、社交网络、Dobbs-Watts-Sabel网络和Barrat-Barthelemy-Vespignani网络的重要节点评估,并与已有的复杂网络节点重要性分析方法进行比较,证明了所提出方法的有效性.展开更多
复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性...复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性和邻域相似性的社区发现算法(Node Stability and Neighbor Similarity Based Community Detection Algorithm, NSNSA)。首先定义节点的标签熵并对节点在社区发现过程中的稳定性进行度量,选择标签熵较低的节点作为稳定节点集;其次根据节点邻域的标签构成情况定义节点的邻域相似性,对节点与其邻居节点的社区归属一致性进行度量;然后利用稳定节点与其直接邻居中邻域相似性最高的节点构造初始网络,并在该子网络上运行标签传播算法,以得到可靠性较高的初始社区发现结果;最后将未聚类节点分配至与其Katz相似性最高的节点所在的社区,对小规模社区进行合并处理,以得到最终的社区划分结果。在真实网络及人工网络数据集上,与LPA,BGLL,Walktrap, Infomap, LPA-S等经典社区发现算法的对比实验表明,NSNSA算法在模块度以及标准互信息方面表现良好。展开更多
Bitcoin has made an increasing impact on the world's economy and financial order,which attracted extensive attention of researchers and regulators from all over the world.Most previous studies had focused more on ...Bitcoin has made an increasing impact on the world's economy and financial order,which attracted extensive attention of researchers and regulators from all over the world.Most previous studies had focused more on the transaction layer,but less on the network layer.In this paper,we developed BNS(Bitcoin Network Sniffer),which could find and connect nodes in the Bitcoin network,and made a measurement in detail.We collected nearly 4.1 million nodes in 1.5 hours and identified 9,515 reachable nodes.We counted the reachable nodes'properties such as:service type,port number,client version and geographic distribution.In addition,we analyzed the stability of the reachable nodes in depth and found nearly 60%kept stable during 15 days.Finally,we proposed a new approach to infer the Bitcoin network topology by analyzing the Neighbor Addresses of Adjacent Nodes and their timestamps,which had an accuracy over 80%.展开更多
文摘定量分析识别复杂网络中的重要节点对于研究复杂网络鲁棒性和脆弱性意义重大,当前基于网络结构的节点重要性评估方法成果丰富,而基于复杂网络动力学模型的节点重要性评估方法较少.针对无向加权网络,本文首先提出了构建其对应的复杂网络动力学模型的方法,并证明了该类复杂网络动力学模型是大范围内一致渐近稳定的;然后建立了复杂网络动力学模型的偏离均值和基于偏离均值的方差两级节点重要性评估标准;最后给出了扰动测试和破坏测试两种基于复杂网络动力学模型的节点重要性评估方法.基于复杂网络动力学模型的节点重要性评估方法不仅结合了网络拓扑结构信息,同时又结合了节点自身的特性,所以评价结果更为全面.将这两种方法用于ARPA(advanced research project agency)网络、对称无向加权网络、社交网络、Dobbs-Watts-Sabel网络和Barrat-Barthelemy-Vespignani网络的重要节点评估,并与已有的复杂网络节点重要性分析方法进行比较,证明了所提出方法的有效性.
文摘复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性和邻域相似性的社区发现算法(Node Stability and Neighbor Similarity Based Community Detection Algorithm, NSNSA)。首先定义节点的标签熵并对节点在社区发现过程中的稳定性进行度量,选择标签熵较低的节点作为稳定节点集;其次根据节点邻域的标签构成情况定义节点的邻域相似性,对节点与其邻居节点的社区归属一致性进行度量;然后利用稳定节点与其直接邻居中邻域相似性最高的节点构造初始网络,并在该子网络上运行标签传播算法,以得到可靠性较高的初始社区发现结果;最后将未聚类节点分配至与其Katz相似性最高的节点所在的社区,对小规模社区进行合并处理,以得到最终的社区划分结果。在真实网络及人工网络数据集上,与LPA,BGLL,Walktrap, Infomap, LPA-S等经典社区发现算法的对比实验表明,NSNSA算法在模块度以及标准互信息方面表现良好。
基金supported by National Key Research and Development Program of China (Grant No.2020YFB1006105)
文摘Bitcoin has made an increasing impact on the world's economy and financial order,which attracted extensive attention of researchers and regulators from all over the world.Most previous studies had focused more on the transaction layer,but less on the network layer.In this paper,we developed BNS(Bitcoin Network Sniffer),which could find and connect nodes in the Bitcoin network,and made a measurement in detail.We collected nearly 4.1 million nodes in 1.5 hours and identified 9,515 reachable nodes.We counted the reachable nodes'properties such as:service type,port number,client version and geographic distribution.In addition,we analyzed the stability of the reachable nodes in depth and found nearly 60%kept stable during 15 days.Finally,we proposed a new approach to infer the Bitcoin network topology by analyzing the Neighbor Addresses of Adjacent Nodes and their timestamps,which had an accuracy over 80%.