Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particul...Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.展开更多
Revealing the role of Coulomb interaction in topological semimetals with Dirac/Weyl-like band dispersion shapes a new frontier in condensed matter physics.Topological node-line semimetals(TNLSMs),anticipated as a fert...Revealing the role of Coulomb interaction in topological semimetals with Dirac/Weyl-like band dispersion shapes a new frontier in condensed matter physics.Topological node-line semimetals(TNLSMs),anticipated as a fertile ground for exploring electronic correlation effects due to the anisotropy associated with their node-line structure,have recently attracted considerable attention.In this study,we report an experimental observation for correlation effects in TNLSMs realized by black phosphorus(BP)under hydrostatic pressure.By performing a combination of nuclear magnetic resonance measurements and band calculations on compressed BP,a magnetic-field-induced electronic instability of Weyl-like fermions is identified under an external magnetic field parallel to the so-called nodal ring in the reciprocal space.Anomalous spin fluctuations serving as the fingerprint of electronic instability are observed at low temperatures,and they are observed to maximize at approximately 1.0 GPa.This study presents compressed BP as a realistic material platform for exploring the rich physics in strongly coupled Weyl-like fermions.展开更多
In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation r...In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation results show that NbAs and TaAs have similar phase diagrams, the same structural phase transition sequence I41md→Pδm2→}P21/c→Pm3m, and slightly different transition pressures. The phase transition sequence of NbP and TaP differs somewhat from that of NbAs and TaAs, in which new structures emerge, such as the Cmcm structure in NbP and the Pmmn structure in TaP. Interestingly, we found that in the electronic structure of the high-pressure phase Pδm2-NbAs, there are coexisting Weyl points and triple degenerate points, similar to those found in high-pressure Pδm2-TaAs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11374056the Special Funds for Major State Basic Research under Grant No 2015CB921700+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)the Qing Nian Ba Jian Program,and the Fok Ying Tung Education Foundation
文摘Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetMs, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2 ) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-liB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-s orbital and the anion As-pz orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg3As3 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.
基金supported by the National Key R&D Program of the Ministry of Science and Technology of China(Grant Nos.2017YFA0300201,and 2016YFA0303000)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY160000)+1 种基金the National Natural Science Foundation of China(Grant No.11534010)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences,China(Grant No.QYZDY-SSWSLH021)。
文摘Revealing the role of Coulomb interaction in topological semimetals with Dirac/Weyl-like band dispersion shapes a new frontier in condensed matter physics.Topological node-line semimetals(TNLSMs),anticipated as a fertile ground for exploring electronic correlation effects due to the anisotropy associated with their node-line structure,have recently attracted considerable attention.In this study,we report an experimental observation for correlation effects in TNLSMs realized by black phosphorus(BP)under hydrostatic pressure.By performing a combination of nuclear magnetic resonance measurements and band calculations on compressed BP,a magnetic-field-induced electronic instability of Weyl-like fermions is identified under an external magnetic field parallel to the so-called nodal ring in the reciprocal space.Anomalous spin fluctuations serving as the fingerprint of electronic instability are observed at low temperatures,and they are observed to maximize at approximately 1.0 GPa.This study presents compressed BP as a realistic material platform for exploring the rich physics in strongly coupled Weyl-like fermions.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0300404)the National Key Projects for Basic Research in China(Grant No.2015CB921202)+4 种基金the National Natural Science Foundation of China(Grant Nos.11574133,and 51372112)the Natural Science Foundation Jiangsu Province(Grant No.BK20150012)the Science Challenge Project(Grant No.TZ2016001)the Fundamental Research Funds for the Central UniversitiesSpecial Program for Applied Research on Super Computation of the National Natural Science FoundationGuangdong Joint Fund
文摘In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation results show that NbAs and TaAs have similar phase diagrams, the same structural phase transition sequence I41md→Pδm2→}P21/c→Pm3m, and slightly different transition pressures. The phase transition sequence of NbP and TaP differs somewhat from that of NbAs and TaAs, in which new structures emerge, such as the Cmcm structure in NbP and the Pmmn structure in TaP. Interestingly, we found that in the electronic structure of the high-pressure phase Pδm2-NbAs, there are coexisting Weyl points and triple degenerate points, similar to those found in high-pressure Pδm2-TaAs.