由于传统节点定位方法大多针对静止传感器网络,不能适用于网络结构和节点位置动态变化的移动传感器网络,提出了一种基于RSSI测距和改进的MCL(Monte Carlo Localization)算法的移动传感器节点定位跟踪方法;首先描述了经典MCL算法和接收...由于传统节点定位方法大多针对静止传感器网络,不能适用于网络结构和节点位置动态变化的移动传感器网络,提出了一种基于RSSI测距和改进的MCL(Monte Carlo Localization)算法的移动传感器节点定位跟踪方法;首先描述了经典MCL算法和接收信号强度RSSI测距方法,然后设计了一种改进的MCL算法,将传统的MCL方法预测粒子位置的过程即预测和滤波两个阶段,更新为锚节点TTL受控泛洪方式广播自身位置、采用拉格朗日插值法预测节点下一时刻的位置和速度、求取锚盒采样区域、k跳锚节点粒子滤波和根据预测下一时刻的节点位置和速度与当前时刻的位置信息确定各粒子权重的5个阶段;采用仿真器MCL-Simulator进行仿真,结果证明:文中方法能有效实现移动节点的定位,与其它方法相比,具有较小的平均定位误差,具有很强的可行性。展开更多
文摘由于传统节点定位方法大多针对静止传感器网络,不能适用于网络结构和节点位置动态变化的移动传感器网络,提出了一种基于RSSI测距和改进的MCL(Monte Carlo Localization)算法的移动传感器节点定位跟踪方法;首先描述了经典MCL算法和接收信号强度RSSI测距方法,然后设计了一种改进的MCL算法,将传统的MCL方法预测粒子位置的过程即预测和滤波两个阶段,更新为锚节点TTL受控泛洪方式广播自身位置、采用拉格朗日插值法预测节点下一时刻的位置和速度、求取锚盒采样区域、k跳锚节点粒子滤波和根据预测下一时刻的节点位置和速度与当前时刻的位置信息确定各粒子权重的5个阶段;采用仿真器MCL-Simulator进行仿真,结果证明:文中方法能有效实现移动节点的定位,与其它方法相比,具有较小的平均定位误差,具有很强的可行性。