High-temperature superconducting(HTS) magnets consisting of no-insulation(NI) double-pancake coils(DPCs) with high thermal stability have been proposed for use in the preparation of high-field magnets. However, increa...High-temperature superconducting(HTS) magnets consisting of no-insulation(NI) double-pancake coils(DPCs) with high thermal stability have been proposed for use in the preparation of high-field magnets. However, increased ramp time is a known disadvantage of the NI approach. To solve this problem, a proportional and integral(PI) active feedback control has been proposed in the charging experiments of the NI magnet. In this study, the electromagnetic-thermal-mechanical characteristics of an NI magnet with and without PI are analyzed to ensure the safety and reliability of PI control. Due to the increase in the radial current of the magnet, the turn-to-turn loss energy of the magnet with PI is more than twice that without PI. However, the magnetization loss energy of the magnet has a small difference with and without PI. It can be also found that the NI magnet with PI has a large temperature rise, and thus it has a low thermal stability margin. Moreover, in the high field, the hoop stress and hoop strain peaks of a magnet with PI are larger than those without PI. Thus, PI control can induce a relatively high risk of mechanical damage in the applications of NI magnets.展开更多
The no-insulation(NI)winding approach can remarkably improve the thermal stability of high-temperature superconducting coil.However,mechanical issues have gradually become a key factor to block the development of NI m...The no-insulation(NI)winding approach can remarkably improve the thermal stability of high-temperature superconducting coil.However,mechanical issues have gradually become a key factor to block the development of NI magnets in recent years.This paper mainly analyzes the effect of the overband on the mechanical behaviors of an NI coil during a quench.A numerical model including a quench model combined with a three-dimensional homogeneous mechanical model is employed to study the change of stress in the coil without and with the over band during a local quench.The results show that the overband has an obvious effect on the stress distribution as the heater is located at the outer turn of the coil.Meanwhile,the values of stress in the coil are also affected by the overband.Moreover,the effects of the thickness of the overband and the location of the heater on the mechanical behaviors of the coil are also discussed.It is worth noting that the overband can remarkably reduce the hoop and axial tensile stresses of the coil during a quench。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11872195, and 11932008)Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2020-1)。
文摘High-temperature superconducting(HTS) magnets consisting of no-insulation(NI) double-pancake coils(DPCs) with high thermal stability have been proposed for use in the preparation of high-field magnets. However, increased ramp time is a known disadvantage of the NI approach. To solve this problem, a proportional and integral(PI) active feedback control has been proposed in the charging experiments of the NI magnet. In this study, the electromagnetic-thermal-mechanical characteristics of an NI magnet with and without PI are analyzed to ensure the safety and reliability of PI control. Due to the increase in the radial current of the magnet, the turn-to-turn loss energy of the magnet with PI is more than twice that without PI. However, the magnetization loss energy of the magnet has a small difference with and without PI. It can be also found that the NI magnet with PI has a large temperature rise, and thus it has a low thermal stability margin. Moreover, in the high field, the hoop stress and hoop strain peaks of a magnet with PI are larger than those without PI. Thus, PI control can induce a relatively high risk of mechanical damage in the applications of NI magnets.
基金The authors acknowledge the supports from the National Natural Science Foundation of China(No.11872195)the Fundamental Research Funds for the Central Universities(lzujbky-2020-1)Science and Technology on Ship Integrated Power System Technology Laboratory(No.6142217190).
文摘The no-insulation(NI)winding approach can remarkably improve the thermal stability of high-temperature superconducting coil.However,mechanical issues have gradually become a key factor to block the development of NI magnets in recent years.This paper mainly analyzes the effect of the overband on the mechanical behaviors of an NI coil during a quench.A numerical model including a quench model combined with a three-dimensional homogeneous mechanical model is employed to study the change of stress in the coil without and with the over band during a local quench.The results show that the overband has an obvious effect on the stress distribution as the heater is located at the outer turn of the coil.Meanwhile,the values of stress in the coil are also affected by the overband.Moreover,the effects of the thickness of the overband and the location of the heater on the mechanical behaviors of the coil are also discussed.It is worth noting that the overband can remarkably reduce the hoop and axial tensile stresses of the coil during a quench。