A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
The light-driven material-microorganism biohybrid system has the potential to transfer solar energy for chemical production.However,few studies have reported the construction of biohybrid systems using light-responsiv...The light-driven material-microorganism biohybrid system has the potential to transfer solar energy for chemical production.However,few studies have reported the construction of biohybrid systems using light-responsive materials with nonmodel strains that have been widely used in practical industrial production for value-added chemicals,especially with regard to the mechanism of action of photogenerated charges in the cytoplasm,probably due to the complexity of their anabolic pathways.Herein,a biohybrid system as a research mode was constructed by electrostatically self-assembling a highly efficient light-harvesting material of graphite-phase nitrided carbon(g-C_(3)N_(4))nanosheets with nonmodel strains(Phaffia rhodozyma)for synthesis of nutritional chemical astaxanthin.The biohybrid interface enabled efficient separation,transfer,and transport of photogenerated charges from g-C_(3)N_(4) into the interior of P.rhodozyma,which improved the substance metabolism and the energy metabolism of P.rhodozyma.Notably,photogenerated charges can significantly promote the accumulation of precursors along the astaxanthin anabolic pathway and enhance the cytoplasmic redox environment and ATP levels in the interior of P.rhodozyma,even under adverse conditions(such as enzyme inhibitors),thus increasing the yield of astaxanthin compared to the traditional culture of P.rhodozyma.This study not only provides new ideas for converting solar energy into value-added chemicals,but it also provides guidance for regulating microbial synthesis plants.展开更多
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat...The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.展开更多
This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine c...This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiog-raphy, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after im-plantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products.展开更多
This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless ...This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations.Results reveal that nitriding depth increased as process temperature and duration increase.The nitriding depth remarkably increased at 475℃for 8 h and at 550℃for 4 h.An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite(S-phase)during low-temperature plasma nitriding.The S-phase was converted to CrN precipitation at 475℃for 8 h and at 550℃for 4 h.Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions.The best surface hardness and fatigue limit were obtained at 550℃for 4 h because of the occurrence of CrN precipitation.展开更多
The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoele...The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.展开更多
The fundamental equations of thermodynamics of a film have been used for describing a fundamental property of solid crystalline materials i.e. the first-order phase transition on the grain boundaries by the formation ...The fundamental equations of thermodynamics of a film have been used for describing a fundamental property of solid crystalline materials i.e. the first-order phase transition on the grain boundaries by the formation of two-dimensional liquid. The generalized equation that is obtained is used for calculating the premelting temperature of any metal, which has a value in the range of 0.55-0.86 of the melting point. The experimental diffusion coefficient of nitrogen in steel at premelting temperature is the same as in the liquid phase. The described phenomenon of phase transition on the grain boundaries decreases in case of radical modification of the existing process engineering of handling metals. It also provides a precise physical explanation to the super plasticity of fine-structure metal alloys.展开更多
A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put ...A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put into the plasma nitriding furnace as sputter sources during nitriding of 722M24 steel. a variety of experimental and analytical techniques were employed to evaluate the structures and hardening response of the nitrided lavers which included metallography for structural examination, glow discharge spectrometry and secondary ion mass spectrometry for chemical composition profile analysis, X-ray diffraction for phase identification and microhardness testing for hardness profile measurements. The results show that the incorporation of rare earth metals in the glow discharge. during plasma nitriding not only influences the discharge characteristics but also results in the deposition of rare earth atoms and their compounds onto the specimen surface. These significantly affect the response of the investigated steel to plasma nitriding. The extent of the influence on plasma nitriding varies with different rare earth metals.展开更多
The fine structure and interface structure of ion-nitrided layers in 35CrMo steel treated by ion-nitriding at 550°C for 6 h were studied with a transmission electron microscope (TEM) and a high resolution transmi...The fine structure and interface structure of ion-nitrided layers in 35CrMo steel treated by ion-nitriding at 550°C for 6 h were studied with a transmission electron microscope (TEM) and a high resolution transmission electron microscope (HRTEM). The results showed that the phase γ′(Fe4N) is a compact structure of equi-axis fine grains. The outermost layer of ion-nitriding is phase ε and γ′, which are arranged in alternating, ribbon-like strips. There are abundant vacancy, dislocation, twin and stacking fault defects. Nitrogen atoms in γ′(Fe4N) are distributed orderly. The interface between phase ε and phase γ′ is smooth and straight and coherent. Their orientation relationships are $(1\bar 11)_{\gamma '} //(0001)$ , and $[110]_{\gamma '} //[11\bar 20]_ \in $ . Not only the structure ledges of monoatom layer, but also those of multiatom layer were found on the interface of phase ε and phase γ′. The existence of a number of crystal defects is the main reason why bombing of ions can accelerate the nitriding process.展开更多
The phenomena of the first order phase transition (two-dimensional melting) of grain boundary at temperatures 0.6 - 0.9 TS0 (of the solid state melting point), discovered by the author (1971), is a fundamental propert...The phenomena of the first order phase transition (two-dimensional melting) of grain boundary at temperatures 0.6 - 0.9 TS0 (of the solid state melting point), discovered by the author (1971), is a fundamental property of solid crystalline materials. This finding leads to a principal revision of the scientific concepts of the solid state of substance. The phenomenological description and justification of the finding are developed. The generalized equation of Clausius-Clapeyron type for two-dimensional phase transition was obtained by applying the mathematical tools of the film thermodynamics. The equation has been used for calculating the grain boundary phase transition(GBPhT) temperature TSf of any metal, which TSf value lies within the range of (0.55 - 0.86) TS0. The investigation outcomes are applied to develop the methodology for more effective hard coating formation by synthesis of nanosize nitrides and carbonitrides in surface layers of steels and nickel alloys using a thermo-chemical processing (TChP). Production of an overall nitrogen concentration gradient from 4% to 0.5% at within surface layers leads to formation of modified coatings with a stepped change in properties. The mechanical behavior of new tools at the industrial tests indicated a higher heat resistance (nickel alloys), high resistance to surface wears and fragile breaks-down (chromium tool steels). A short overview of the results of some graded alloys characterization is presented.展开更多
A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, ...A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, such as 3nm nitrided oxide, dual poly Si gate electrode, novel super steep retrograde channel doping by heavy ion implantation, ultra shallow S/D extension formed by Ge PAI(Pre Amorphism Implantation) plus LEI(Low Energy Implantation), thin and low resistance Ti SALICIDE by Ge PAI and special cleaning, etc. The shortest channel length of the CMOS device is 70nm. The threshold voltages, G m and off current are 0 28V,490mS·mm -1 and 0 08nA/μm for NMOS and -0 3V,340mS·mm -1 and 0 2nA/μm for PMOS, respectively. Delays of 23 5ps/stage at 1 5V, 17 5ps/stage at 2 0V and 12 5ps/stage at 3V are achieved in the 57 stage unloaded 100nm CMOS ring oscillator circuits.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
基金supported by the National Natural Science Foundation of China (grant nos.21727808,21971114,and 21908105)the Natural Science Foundation of Jiangsu Province (grant no.BK20200090)the National Science Fund for Distinguished Young Scholars (grant no.21625401).
文摘The light-driven material-microorganism biohybrid system has the potential to transfer solar energy for chemical production.However,few studies have reported the construction of biohybrid systems using light-responsive materials with nonmodel strains that have been widely used in practical industrial production for value-added chemicals,especially with regard to the mechanism of action of photogenerated charges in the cytoplasm,probably due to the complexity of their anabolic pathways.Herein,a biohybrid system as a research mode was constructed by electrostatically self-assembling a highly efficient light-harvesting material of graphite-phase nitrided carbon(g-C_(3)N_(4))nanosheets with nonmodel strains(Phaffia rhodozyma)for synthesis of nutritional chemical astaxanthin.The biohybrid interface enabled efficient separation,transfer,and transport of photogenerated charges from g-C_(3)N_(4) into the interior of P.rhodozyma,which improved the substance metabolism and the energy metabolism of P.rhodozyma.Notably,photogenerated charges can significantly promote the accumulation of precursors along the astaxanthin anabolic pathway and enhance the cytoplasmic redox environment and ATP levels in the interior of P.rhodozyma,even under adverse conditions(such as enzyme inhibitors),thus increasing the yield of astaxanthin compared to the traditional culture of P.rhodozyma.This study not only provides new ideas for converting solar energy into value-added chemicals,but it also provides guidance for regulating microbial synthesis plants.
文摘The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.
基金This study was supported by National Key R&D Program of China(grants number 2018YFC1106600)Shenzhen Industrial and Information Technology Bureau(20180309174916657)Science,Technology and Innova-tion Commission of Shenzhen Municipality(grant number GJHZ20180418190517302).
文摘This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiog-raphy, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after im-plantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products.
基金the Scientific and Technological Research Council of Turkey(TUBITAK)for the support of this study(Grant No:215M134)。
文摘This study aims to draw an exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions.The pulsed plasma nitriding treatment was applied to AISI 304 austenitic stainless steel at different temperatures and durations.Results reveal that nitriding depth increased as process temperature and duration increase.The nitriding depth remarkably increased at 475℃for 8 h and at 550℃for 4 h.An austenite structure was transformed into a metastable nitrogen-oversaturated body-centered tetragonal expanded austenite(S-phase)during low-temperature plasma nitriding.The S-phase was converted to CrN precipitation at 475℃for 8 h and at 550℃for 4 h.Surface hardness and fatigue limit increased through plasma nitriding regardless of process conditions.The best surface hardness and fatigue limit were obtained at 550℃for 4 h because of the occurrence of CrN precipitation.
基金Funded by the National Natural Science Foundation of China(No.51171125)the National High-Tech Research and Development Program of China(863 Program)(No.2007AAO3Z521)+3 种基金the Natural Science Foundation of of Shanxi Province(No.2012011021-4,2012021021-8)the Shanxi Province Foundation for Returned Overseas Scholars(No 2011-038)the Shanxi Province Programs for Science and Technology Development(20110321051)the Taiyuan University of Technology Graduate Innovation Fund
文摘The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.
文摘The fundamental equations of thermodynamics of a film have been used for describing a fundamental property of solid crystalline materials i.e. the first-order phase transition on the grain boundaries by the formation of two-dimensional liquid. The generalized equation that is obtained is used for calculating the premelting temperature of any metal, which has a value in the range of 0.55-0.86 of the melting point. The experimental diffusion coefficient of nitrogen in steel at premelting temperature is the same as in the liquid phase. The described phenomenon of phase transition on the grain boundaries decreases in case of radical modification of the existing process engineering of handling metals. It also provides a precise physical explanation to the super plasticity of fine-structure metal alloys.
文摘A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put into the plasma nitriding furnace as sputter sources during nitriding of 722M24 steel. a variety of experimental and analytical techniques were employed to evaluate the structures and hardening response of the nitrided lavers which included metallography for structural examination, glow discharge spectrometry and secondary ion mass spectrometry for chemical composition profile analysis, X-ray diffraction for phase identification and microhardness testing for hardness profile measurements. The results show that the incorporation of rare earth metals in the glow discharge. during plasma nitriding not only influences the discharge characteristics but also results in the deposition of rare earth atoms and their compounds onto the specimen surface. These significantly affect the response of the investigated steel to plasma nitriding. The extent of the influence on plasma nitriding varies with different rare earth metals.
文摘The fine structure and interface structure of ion-nitrided layers in 35CrMo steel treated by ion-nitriding at 550°C for 6 h were studied with a transmission electron microscope (TEM) and a high resolution transmission electron microscope (HRTEM). The results showed that the phase γ′(Fe4N) is a compact structure of equi-axis fine grains. The outermost layer of ion-nitriding is phase ε and γ′, which are arranged in alternating, ribbon-like strips. There are abundant vacancy, dislocation, twin and stacking fault defects. Nitrogen atoms in γ′(Fe4N) are distributed orderly. The interface between phase ε and phase γ′ is smooth and straight and coherent. Their orientation relationships are $(1\bar 11)_{\gamma '} //(0001)$ , and $[110]_{\gamma '} //[11\bar 20]_ \in $ . Not only the structure ledges of monoatom layer, but also those of multiatom layer were found on the interface of phase ε and phase γ′. The existence of a number of crystal defects is the main reason why bombing of ions can accelerate the nitriding process.
文摘The phenomena of the first order phase transition (two-dimensional melting) of grain boundary at temperatures 0.6 - 0.9 TS0 (of the solid state melting point), discovered by the author (1971), is a fundamental property of solid crystalline materials. This finding leads to a principal revision of the scientific concepts of the solid state of substance. The phenomenological description and justification of the finding are developed. The generalized equation of Clausius-Clapeyron type for two-dimensional phase transition was obtained by applying the mathematical tools of the film thermodynamics. The equation has been used for calculating the grain boundary phase transition(GBPhT) temperature TSf of any metal, which TSf value lies within the range of (0.55 - 0.86) TS0. The investigation outcomes are applied to develop the methodology for more effective hard coating formation by synthesis of nanosize nitrides and carbonitrides in surface layers of steels and nickel alloys using a thermo-chemical processing (TChP). Production of an overall nitrogen concentration gradient from 4% to 0.5% at within surface layers leads to formation of modified coatings with a stepped change in properties. The mechanical behavior of new tools at the industrial tests indicated a higher heat resistance (nickel alloys), high resistance to surface wears and fragile breaks-down (chromium tool steels). A short overview of the results of some graded alloys characterization is presented.
文摘A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, such as 3nm nitrided oxide, dual poly Si gate electrode, novel super steep retrograde channel doping by heavy ion implantation, ultra shallow S/D extension formed by Ge PAI(Pre Amorphism Implantation) plus LEI(Low Energy Implantation), thin and low resistance Ti SALICIDE by Ge PAI and special cleaning, etc. The shortest channel length of the CMOS device is 70nm. The threshold voltages, G m and off current are 0 28V,490mS·mm -1 and 0 08nA/μm for NMOS and -0 3V,340mS·mm -1 and 0 2nA/μm for PMOS, respectively. Delays of 23 5ps/stage at 1 5V, 17 5ps/stage at 2 0V and 12 5ps/stage at 3V are achieved in the 57 stage unloaded 100nm CMOS ring oscillator circuits.