Network slicing is one of the most important concepts in 5G networks. It is enabled by the Network Function Virtualization (NFV) technology to allow a set of Virtual Network Functions (VNFs) to be interconnected to fo...Network slicing is one of the most important concepts in 5G networks. It is enabled by the Network Function Virtualization (NFV) technology to allow a set of Virtual Network Functions (VNFs) to be interconnected to form a Network Service (NS). When network slices are created in 5G, some are shared among different 5G services while the others are dedicated to specific 5G services. The latter are called dedicated slices. Dedicated slices can be constructed with different configurations. In this research, dedicated slices of different configurations in 5G Core were evaluated in order to discover which one would perform better than the others. The performance of three systems would be compared: 1) Free5GC Stage 2 with each dedicated slice consisting of only UPF;2) Free5GC Stage 3 with each dedicated slice consisting of only UPF;3) Free5GC Stage 3 with each dedicated slice consisting of both SMF and UPF in terms of their registration time, response time, throughput, resource cost, and CPU utilization. It is shown that not one of the above systems will always be the best choice;based on the requirements, a specific system may be the best under a specific situation.展开更多
HWANG Jenq-Neng received his Ph.D. degree from the University of Southern California, USA. In the summer of 1989, Dr. HWANG joined the De- partment of Electrical Engineering of the Universi- ty of Washington in Seattl...HWANG Jenq-Neng received his Ph.D. degree from the University of Southern California, USA. In the summer of 1989, Dr. HWANG joined the De- partment of Electrical Engineering of the Universi- ty of Washington in Seattle, USA, where he has been promoted to Full Professor since 1999. He served as the Associate Chair for Research fi'om 2003 to 2005, and from 2011-2015. He is current- ly the Associate Chair for Global Affairs and Inter- national Development in the EE Depamnent. Hehas written more than 330 journal papers, conference papers and book chapters in the areas of machine learning, muhimedia signal processing, and muhimedia system integration and networking, including an au- thored textbook on "Multimedia Networking: from Theory to Practice," published by Cambridge University Press. Dr. HWANG has close work- ing relationship with the industry on muhimedia signal processing and nmltimedia networking.展开更多
文摘Network slicing is one of the most important concepts in 5G networks. It is enabled by the Network Function Virtualization (NFV) technology to allow a set of Virtual Network Functions (VNFs) to be interconnected to form a Network Service (NS). When network slices are created in 5G, some are shared among different 5G services while the others are dedicated to specific 5G services. The latter are called dedicated slices. Dedicated slices can be constructed with different configurations. In this research, dedicated slices of different configurations in 5G Core were evaluated in order to discover which one would perform better than the others. The performance of three systems would be compared: 1) Free5GC Stage 2 with each dedicated slice consisting of only UPF;2) Free5GC Stage 3 with each dedicated slice consisting of only UPF;3) Free5GC Stage 3 with each dedicated slice consisting of both SMF and UPF in terms of their registration time, response time, throughput, resource cost, and CPU utilization. It is shown that not one of the above systems will always be the best choice;based on the requirements, a specific system may be the best under a specific situation.
文摘HWANG Jenq-Neng received his Ph.D. degree from the University of Southern California, USA. In the summer of 1989, Dr. HWANG joined the De- partment of Electrical Engineering of the Universi- ty of Washington in Seattle, USA, where he has been promoted to Full Professor since 1999. He served as the Associate Chair for Research fi'om 2003 to 2005, and from 2011-2015. He is current- ly the Associate Chair for Global Affairs and Inter- national Development in the EE Depamnent. Hehas written more than 330 journal papers, conference papers and book chapters in the areas of machine learning, muhimedia signal processing, and muhimedia system integration and networking, including an au- thored textbook on "Multimedia Networking: from Theory to Practice," published by Cambridge University Press. Dr. HWANG has close work- ing relationship with the industry on muhimedia signal processing and nmltimedia networking.