Online news articles,as a new format of press releases,have sprung up on the Internet.With its convenience and recency,more and more people prefer to read news online instead of reading the paper-format press releases...Online news articles,as a new format of press releases,have sprung up on the Internet.With its convenience and recency,more and more people prefer to read news online instead of reading the paper-format press releases.However,a gigantic amount of news events might be released at a rate of hundreds,even thousands per hour.A challenging problem is how to efficiently select specific news articles from a large corpus of newly-published press releases to recommend to individual readers,where the selected news items should match the reader's reading preference as much as possible.This issue refers to personalized news recommendation.Recently,personalized news recommendation has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world.Existing personalized news recommendation systems strive to adapt their services to individual users by virtue of both user and news content information.A variety of techniques have been proposed to tackle personalized news recommendation,including content-based,collaborative filtering systems and hybrid versions of these two.In this paper,we provide a comprehensive investigation of existing personalized news recommenders.We discuss several essential issues underlying the problem of personalized news recommendation,and explore possible solutions for performance improvement.Further,we provide an empirical study on a collection of news articles obtained from various news websites,and evaluate the effect of different factors for personalized news recommendation.We hope our discussion and exploration would provide insights for researchers who are interested in personalized news recommendation.展开更多
Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms, but also manipulates t...Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms, but also manipulates the opinions and sentiments of the public. Detecting fake news is a daunting challenge due to subtle difference between real and fake news. As a first step of fighting with fake news, this paper characterizes hundreds of popular fake and real news measured by shares, reactions, and comments on Facebook from two perspectives:domain reputations and content understanding. Our domain reputation analysis reveals that the Web sites of the fake and real news publishers exhibit diverse registration behaviors, registration timing, domain rankings, and domain popularity. In addition, fake news tends to disappear from the Web after a certain amount of time. The content characterizations on the fake and real news corpus suggest that simply applying term frequency-inverse document frequency(tf-idf) and Latent Dirichlet Allocation(LDA) topic modeling is inefficient in detecting fake news,while exploring document similarity with the term and word vectors is a very promising direction for predicting fake and real news. To the best of our knowledge, this is the first effort to systematically study domain reputations and content characteristics of fake and real news, which will provide key insights for effectively detecting fake news on social media.展开更多
基金supported by the National Science Foundation of US under Grant Nos.IIS-0546280 and CCF-0830659the National Natural Science Foundation of China under Grant No.61070151
文摘Online news articles,as a new format of press releases,have sprung up on the Internet.With its convenience and recency,more and more people prefer to read news online instead of reading the paper-format press releases.However,a gigantic amount of news events might be released at a rate of hundreds,even thousands per hour.A challenging problem is how to efficiently select specific news articles from a large corpus of newly-published press releases to recommend to individual readers,where the selected news items should match the reader's reading preference as much as possible.This issue refers to personalized news recommendation.Recently,personalized news recommendation has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world.Existing personalized news recommendation systems strive to adapt their services to individual users by virtue of both user and news content information.A variety of techniques have been proposed to tackle personalized news recommendation,including content-based,collaborative filtering systems and hybrid versions of these two.In this paper,we provide a comprehensive investigation of existing personalized news recommenders.We discuss several essential issues underlying the problem of personalized news recommendation,and explore possible solutions for performance improvement.Further,we provide an empirical study on a collection of news articles obtained from various news websites,and evaluate the effect of different factors for personalized news recommendation.We hope our discussion and exploration would provide insights for researchers who are interested in personalized news recommendation.
基金supported in part by National Science Foundation (NSF) Algorithms for Threat Detection (ATD) Program (No. DMS #1737861)NSF Computer and Network Systems (CNS) Program (No. CNS #1816995)
文摘Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms, but also manipulates the opinions and sentiments of the public. Detecting fake news is a daunting challenge due to subtle difference between real and fake news. As a first step of fighting with fake news, this paper characterizes hundreds of popular fake and real news measured by shares, reactions, and comments on Facebook from two perspectives:domain reputations and content understanding. Our domain reputation analysis reveals that the Web sites of the fake and real news publishers exhibit diverse registration behaviors, registration timing, domain rankings, and domain popularity. In addition, fake news tends to disappear from the Web after a certain amount of time. The content characterizations on the fake and real news corpus suggest that simply applying term frequency-inverse document frequency(tf-idf) and Latent Dirichlet Allocation(LDA) topic modeling is inefficient in detecting fake news,while exploring document similarity with the term and word vectors is a very promising direction for predicting fake and real news. To the best of our knowledge, this is the first effort to systematically study domain reputations and content characteristics of fake and real news, which will provide key insights for effectively detecting fake news on social media.