The objective of the present study is to calculate photon shielding parameters for seven polyethylene-based neutron shielding materials. The parameters include the effective atomic number(Z_(eff)), the effective elect...The objective of the present study is to calculate photon shielding parameters for seven polyethylene-based neutron shielding materials. The parameters include the effective atomic number(Z_(eff)), the effective electron density(N_(eff)) for photon interaction and photon energy absorption,and gamma-ray kerma coefficient(kc). The calculations of Z_(eff)are presented as a single-valued and are energy dependent. While Z_(eff)values were calculated via simplistic powerlaw method, the energy-dependent Z_(eff)for photon interaction(Z_(PI-eff)) and photon energy absorption(Z_(PEA-eff)) are obtained via the direct method for energy ranges of 1 keV–100 GeV and 1 keV–20 Me V, respectively. The kccoefficients are calculated by summing the contributions of the major partial photon interactions for energy range of 1 keV–100 MeV. In most cases, data are presented relative to pure polyethylene to allow direct comparison over a range of energy. The results show that combination of polyethylene with other elements such as lithium and aluminum leads to neutron shielding material with more ability to absorb neutron and crays. Also, the kerma coefficient first increases with Z of the additive element at low photon energies and then converges with pure polyethylene at energies greater than 100 keV.展开更多
文摘The objective of the present study is to calculate photon shielding parameters for seven polyethylene-based neutron shielding materials. The parameters include the effective atomic number(Z_(eff)), the effective electron density(N_(eff)) for photon interaction and photon energy absorption,and gamma-ray kerma coefficient(kc). The calculations of Z_(eff)are presented as a single-valued and are energy dependent. While Z_(eff)values were calculated via simplistic powerlaw method, the energy-dependent Z_(eff)for photon interaction(Z_(PI-eff)) and photon energy absorption(Z_(PEA-eff)) are obtained via the direct method for energy ranges of 1 keV–100 GeV and 1 keV–20 Me V, respectively. The kccoefficients are calculated by summing the contributions of the major partial photon interactions for energy range of 1 keV–100 MeV. In most cases, data are presented relative to pure polyethylene to allow direct comparison over a range of energy. The results show that combination of polyethylene with other elements such as lithium and aluminum leads to neutron shielding material with more ability to absorb neutron and crays. Also, the kerma coefficient first increases with Z of the additive element at low photon energies and then converges with pure polyethylene at energies greater than 100 keV.