Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unb...Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unbounded delay, and examines the pathwise stability of this solution with general decay rate. As an application of our results, this paper also considers in detail a two-dimensional unbounded delay neutral stochastic differential equation with polynomial coefficients.展开更多
This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard ite...This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.展开更多
The main aim of this paper is to establish the existence-and-uniqueness theorem for neutral stochastic functional differential equations with infinite delay at phase space BC((-∞, 0]; R^n) An example is given for ...The main aim of this paper is to establish the existence-and-uniqueness theorem for neutral stochastic functional differential equations with infinite delay at phase space BC((-∞, 0]; R^n) An example is given for illustration.展开更多
This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen...This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.展开更多
In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the...In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.展开更多
This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the ...This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 11001091) and Chinese University Research Foundation (Grant No. 2010MS129)
文摘Without the linear growth condition, by the use of Lyapunov function, this paper estab- lishes the existence^and-uniqueness theorem of global solutions to a class of neutral stochastic differen- tim equations with unbounded delay, and examines the pathwise stability of this solution with general decay rate. As an application of our results, this paper also considers in detail a two-dimensional unbounded delay neutral stochastic differential equation with polynomial coefficients.
基金supported by the grant of Chongqing municipal educational commission(No.KJ090804)Natural Science Foundation Project of CQ CSTC 2009BB3057
文摘This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.
基金Foundation item: the National Natural Science Foundation of China (No. 10671078).
文摘The main aim of this paper is to establish the existence-and-uniqueness theorem for neutral stochastic functional differential equations with infinite delay at phase space BC((-∞, 0]; R^n) An example is given for illustration.
基金Supported by NSFC (11001091)Chinese UniversityResearch Foundation (2010MS129)
文摘This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.
文摘In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.
文摘This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.