BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury, including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and em...BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury, including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and embryonic neural tissue transplantation. However, there is a need for improved outcomes. OBJECTIVE: To investigate the repair feasibility for rat spinal cord injury using human neural stem cells (hNSCs) genetically modified by lentivirus to express neurotrophin-3. DESIGN, TIME AND SETTING: In vitro cell biological experiment and in vivo randomized, controlled genetic engineering experiment were performed at the Third Military Medical University of Chinese PLA and First People's Hospital of Yibin, China from March 2006 to December 2007. MATERIALS: A total of 64 adult, female, Wistar rats were used for the in vivo study. Of them, 48 rats were used to establish models of spinal cord hemisection, and were subsequently equally and randomly assigned to model, genetically modified hNSC, and normal hNSC groups. The remaining 16 rats served as normal controls. METHODS: hNSCs were in vitro genetically modified by lentivirus to secrete both green fluorescence protein and neurotrophin-3. Neurotrophin-3 expression was measured by Western blot. Genetically modified hNSC or normal hNSC suspension (5 × 10^5) was injected into the rat spinal cord following T10 spinal cord hemisection. A total of 5μL Dulbecco's-modified Eagle's medium was infused into the rat spinal cord in the model grop. Transgene expression and survival of transplanted hNSCs were determined by immunohistochemistry. Motor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scale. MAIN OUTCOME MEASURES: The following parameters were measured: expression of neurotrophin-3 produced by genetically modified hNSCs, transgene expression and survival of hNSCs in rats, motor function in rats. RESULTS: hNSCs were successfully genetically modified by lentivirus to stably express neurotrophin-3. The transplanted展开更多
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remai...Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.展开更多
Objective: To investigate the expression of neurotrophin-3 (NT-3) gene in Schwann cells of rat sciatic nerve introduced by an adenovirus vector in vivo. Methods: A recombinant adenovirus vector for NT-3 (Ad-NT-3) was ...Objective: To investigate the expression of neurotrophin-3 (NT-3) gene in Schwann cells of rat sciatic nerve introduced by an adenovirus vector in vivo. Methods: A recombinant adenovirus vector for NT-3 (Ad-NT-3) was propagated in 293 packaging cells and titered with tissue culture infectious dose 50 (TCID 50). Ad-NT-3 was injected directly into the rat sciatic nerve after transection and immediate repair. Immunohistochemical staining was employed to determine the expression of NT-3 in Schwann cells in rat sciatic nerve and the expressive intensity of the tissue slices of the sciatic nerve was measured with LEICA M550 image analysis system. Results: On the 2nd day after injection of Ad-NT-3, positive stain in the Schwann cells was apparent in the vicinity of anastomosis. NT-3 expression increased significantly on the 7th day (P< 0.01) and then decreased 14-28 days after injection (P< 0.01). There was no significant difference of NT-3 expression between the 14th and 28th day groups (P> 0.05). Compared with the 2nd day group, the 14th and 28th day groups still maintained a relatively high level of NT-3 (P< 0.01). Intact and repaired nerves, which were injected with adenovirus encoding LacZ genes ( Ad-LacZ) or physiological saline served as controls, showed no NT-3-positive Schwann cells. Conclusions: An adenovirus vector can be used to induce efficiently the expression of NT-3 gene in Schwann cells of rat peripheral nerves following nerve injury and repair, which suggests that neurotrophic factors can be introduced into Schwann cells with an adenovirus vector to promote peripheral nerve regeneration.展开更多
BACKGROUND: Recent studies have suggested that regeneration of the central nerve fiber following spinal cord injury occurs under specific conditions. OBJECTIVE: To study the effects of Nogo-neutralizing antibody (...BACKGROUND: Recent studies have suggested that regeneration of the central nerve fiber following spinal cord injury occurs under specific conditions. OBJECTIVE: To study the effects of Nogo-neutralizing antibody (IN-1), in combination with neurotrophin-3 (NT-3), on axonal regeneration and motor function following spinal cord injury in the rat. DESIGN, TIME AND SETTING: A randomized, controlled, animal study combining immunohistochemistry was performed at the Laboratory of Neuroanatomy of Xiangya Medical College, and Central Laboratory of Xiangya the Third Hospital, Central South University from January 2006 to December 2007. MATERIALS: Eighteen healthy, Sprague Dawley rats were randomly divided into three groups, with six rats per group: control, IN-l, and IN-1/NT-3. Hemisectioned spinal cord injury models were established by cutting the posterior 2/3 of spinal cord, which is equivalent to the Ts level. METHODS: A polyethylene tubing was inserted through into subarachnoid cavity, equivalent to the superior margin at the T8 level. Saline, IN-1, and IN-1/NT-3 were respectively injected into control, IN-1, and IN-1/NT-3 groups, three times/day for seven consecutive days. MAIN OUTCOME MEASURES: At 2 weeks post-surgery, biotin dextran amine (10%) was injected into the right sensorimotor cortex area. At day 28 post-surgery, spinal cord tissue was prepared for frozen sections Positive astrocytic expression was observed with glial fibrillary acidic protein (GFAP) immunohistochemical staining whose proliferation level was represented by gray value, i.e. the higher the gray value was, the less the positive cells were, and growth of positive fibers was observed with a biotin dextran amine histological reaction. Motor function was measured according to BBB scores pre-operatively, as well as at days 1, 7, 14, 21, and 28 post-operatively. RESULTS: Three rats died during experimentation. By random supplement, a total of 18 rats were included. GFAP-positive astrocytes were observed in all the thr展开更多
文摘BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury, including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and embryonic neural tissue transplantation. However, there is a need for improved outcomes. OBJECTIVE: To investigate the repair feasibility for rat spinal cord injury using human neural stem cells (hNSCs) genetically modified by lentivirus to express neurotrophin-3. DESIGN, TIME AND SETTING: In vitro cell biological experiment and in vivo randomized, controlled genetic engineering experiment were performed at the Third Military Medical University of Chinese PLA and First People's Hospital of Yibin, China from March 2006 to December 2007. MATERIALS: A total of 64 adult, female, Wistar rats were used for the in vivo study. Of them, 48 rats were used to establish models of spinal cord hemisection, and were subsequently equally and randomly assigned to model, genetically modified hNSC, and normal hNSC groups. The remaining 16 rats served as normal controls. METHODS: hNSCs were in vitro genetically modified by lentivirus to secrete both green fluorescence protein and neurotrophin-3. Neurotrophin-3 expression was measured by Western blot. Genetically modified hNSC or normal hNSC suspension (5 × 10^5) was injected into the rat spinal cord following T10 spinal cord hemisection. A total of 5μL Dulbecco's-modified Eagle's medium was infused into the rat spinal cord in the model grop. Transgene expression and survival of transplanted hNSCs were determined by immunohistochemistry. Motor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scale. MAIN OUTCOME MEASURES: The following parameters were measured: expression of neurotrophin-3 produced by genetically modified hNSCs, transgene expression and survival of hNSCs in rats, motor function in rats. RESULTS: hNSCs were successfully genetically modified by lentivirus to stably express neurotrophin-3. The transplanted
基金supported by Scientific Research Fund of Xinxiang Medical University,No.2013ZD120Science and Technology Innovation Talents in Universities in Ministry of Education of Henan Province in 2010,No.2010HASTIT036
文摘Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.
文摘Objective: To investigate the expression of neurotrophin-3 (NT-3) gene in Schwann cells of rat sciatic nerve introduced by an adenovirus vector in vivo. Methods: A recombinant adenovirus vector for NT-3 (Ad-NT-3) was propagated in 293 packaging cells and titered with tissue culture infectious dose 50 (TCID 50). Ad-NT-3 was injected directly into the rat sciatic nerve after transection and immediate repair. Immunohistochemical staining was employed to determine the expression of NT-3 in Schwann cells in rat sciatic nerve and the expressive intensity of the tissue slices of the sciatic nerve was measured with LEICA M550 image analysis system. Results: On the 2nd day after injection of Ad-NT-3, positive stain in the Schwann cells was apparent in the vicinity of anastomosis. NT-3 expression increased significantly on the 7th day (P< 0.01) and then decreased 14-28 days after injection (P< 0.01). There was no significant difference of NT-3 expression between the 14th and 28th day groups (P> 0.05). Compared with the 2nd day group, the 14th and 28th day groups still maintained a relatively high level of NT-3 (P< 0.01). Intact and repaired nerves, which were injected with adenovirus encoding LacZ genes ( Ad-LacZ) or physiological saline served as controls, showed no NT-3-positive Schwann cells. Conclusions: An adenovirus vector can be used to induce efficiently the expression of NT-3 gene in Schwann cells of rat peripheral nerves following nerve injury and repair, which suggests that neurotrophic factors can be introduced into Schwann cells with an adenovirus vector to promote peripheral nerve regeneration.
基金the Foundation of Hunan Public Health Bureau, No.B2005-076
文摘BACKGROUND: Recent studies have suggested that regeneration of the central nerve fiber following spinal cord injury occurs under specific conditions. OBJECTIVE: To study the effects of Nogo-neutralizing antibody (IN-1), in combination with neurotrophin-3 (NT-3), on axonal regeneration and motor function following spinal cord injury in the rat. DESIGN, TIME AND SETTING: A randomized, controlled, animal study combining immunohistochemistry was performed at the Laboratory of Neuroanatomy of Xiangya Medical College, and Central Laboratory of Xiangya the Third Hospital, Central South University from January 2006 to December 2007. MATERIALS: Eighteen healthy, Sprague Dawley rats were randomly divided into three groups, with six rats per group: control, IN-l, and IN-1/NT-3. Hemisectioned spinal cord injury models were established by cutting the posterior 2/3 of spinal cord, which is equivalent to the Ts level. METHODS: A polyethylene tubing was inserted through into subarachnoid cavity, equivalent to the superior margin at the T8 level. Saline, IN-1, and IN-1/NT-3 were respectively injected into control, IN-1, and IN-1/NT-3 groups, three times/day for seven consecutive days. MAIN OUTCOME MEASURES: At 2 weeks post-surgery, biotin dextran amine (10%) was injected into the right sensorimotor cortex area. At day 28 post-surgery, spinal cord tissue was prepared for frozen sections Positive astrocytic expression was observed with glial fibrillary acidic protein (GFAP) immunohistochemical staining whose proliferation level was represented by gray value, i.e. the higher the gray value was, the less the positive cells were, and growth of positive fibers was observed with a biotin dextran amine histological reaction. Motor function was measured according to BBB scores pre-operatively, as well as at days 1, 7, 14, 21, and 28 post-operatively. RESULTS: Three rats died during experimentation. By random supplement, a total of 18 rats were included. GFAP-positive astrocytes were observed in all the thr