期刊文献+
共找到4,950篇文章
< 1 2 248 >
每页显示 20 50 100
Effects of repetitive transcranial magnetic stimulation on cognitive function and cholinergic activity in the rat hippocampus after vascular dementia 被引量:34
1
作者 Xiao-Qiao Zhang Li Li +2 位作者 Jiang-Tao Huo Min Cheng Lin-Hong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1384-1389,共6页
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment that can enhance the recovery of neurological function after stroke. Whether it can similarly promote the recovery of cognitive functio... Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment that can enhance the recovery of neurological function after stroke. Whether it can similarly promote the recovery of cognitive function after vascular dementia remains unknown, In this study, a rat model for vascular dementia was established by the two-vessel occlusion method. Two days after injury, 30 pulses of rTMS were ad- ministered to each cerebral hemisphere at a frequency of 0.5 Hz and a magnetic field intensity of 1,33 T. The Morris water maze test was used to evaluate learning and memory function. The Karnovsky-Roots method was performed to determine the density of cholinergic neurons in the hippocampal CA1 region. Immunohistochemical staining was used to determine the number of brain-derived neurotroph- ic factor (BDNF)-immunoreactive cells in the hippocampal CA1 region, rTMS treatment for 30 days significantly improved learning and memory function, increased acetylcholinesterase and choline acetyltransferase activity, increased the density of cholinergic neurons, and increased the number of BDNF-immunoreactive cells. These results indicate that rTMS can ameliorate learning and memory deficiencies in rats with vascular dementia, The mechanism through which this occurs might be related to the promotion of BDNF expression and subsequent restoration of cholinergic system activity in hippocampal CA 1 region. 展开更多
关键词 nerve regeneration cholinergic system neurotrophic factor hippocampal CA1 region learning and memory function repetitivetranscranial magnetic stimulation vascular dementia neural regeneration
下载PDF
New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases 被引量:30
2
作者 Naoki Adachi Tadahiro Numakawa +2 位作者 Misty Richards Shingo Nakajima Hiroshi Kunugi 《World Journal of Biological Chemistry》 CAS 2014年第4期409-428,共20页
Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to ... Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia. 展开更多
关键词 BRAIN-DERIVED neurotrophic factor Transcription TRANSPORT SECRETION NEURODEGENERATIVE DISORDERS Psychiatric DISORDERS
下载PDF
Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression 被引量:29
3
作者 Hao-hao Chen Ning Zhang +5 位作者 Wei-yun Li Ma-rong Fang Hui Zhang Yuan-shu Fang Ming-xing Ding Xiao-yan Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1427-1432,共6页
Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of po... Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo- campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors. 展开更多
关键词 nerve regeneration brain injury brain-derived neurotrophic factor LENTIVIRUS post-strokedepression depression-like behavior HIPPOCAMPUS cerebral ischemia sucrose solution consumption open field test chronic unpredictable mild stress western blot assay neural regeneration
下载PDF
Acupuncture promotes functional recovery after cerebral hemorrhage by upregulating neurotrophic factor expression 被引量:27
4
作者 Dan Li Qiu-Xin Chen +4 位作者 Wei Zou Xiao-Wei Sun Xue-Ping Yu Xiao-Hong Dai Wei Teng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1510-1517,共8页
Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for c... Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear.In this study,a model of intracerebral hemorrhage was produced by injecting 50μL autologous blood into the caudate nucleus in Wistar rats.Acupuncture at Baihui(DU20)and Qubin(GB7)acupoints was performed at a depth of 1.0 inch,12 hours after blood injection,once every 24 hours.The needle was rotated at 200 r/min for 5 minutes,For each 30-minute session,needling at 200 r/min was performed for three sessions,each lasting 5 minutes.For the positive control group,at 6 hours,and 1,2,3 and 7 days after induction of hemorrhage,the rats were intraperitoneally injected with 1 mL aniracetam(0.75 mg/mL),three times a day.The Bederson behavioral test was used to assess palsy in the contralateral limbs.Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia.Immunohistochemistry was performed to count the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Acupuncture effectively reduced hemorrhage and brain edema,elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia,and increased the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Together,these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors.The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center(approval No.2017061001)on June 10,2017. 展开更多
关键词 ACUPUNCTURE basic fibroblast growth factor brain cell protection cerebral hemorrhage electron microscope glial cell line-derived neurotrophic factor immunohistochemistry NESTIN western blot assay
下载PDF
Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms 被引量:26
5
作者 Zhi-yuan Guo Xun Sun +3 位作者 Xiao-long Xu Qing Zhao Jiang Peng Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期651-658,共8页
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen... Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair. 展开更多
关键词 nerve regeneration human umbilical cord-derived mesenchymal stem cells conditioned medium Schwann cells dorsal root ganglion AXONS peripheral nerve regeneration neurotrophic factors neural regeneration
下载PDF
Electroacupuncture promotes peripheral nerve regeneration after facial nerve crush injury and upregulates the expression of glial cell-derived neurotrophic factor 被引量:25
6
作者 Jing Fei Lin Gao +2 位作者 Huan-Huan Li Qiong-Lan Yuan Lei-Ji Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期673-682,共10页
The efficacy of electroacupuncture in the treatment of peripheral facial paralysis is known, but the specific mechanism has not been clarified. Glial cell-derived neurotrophic factor(GDNF) has been shown to protect ne... The efficacy of electroacupuncture in the treatment of peripheral facial paralysis is known, but the specific mechanism has not been clarified. Glial cell-derived neurotrophic factor(GDNF) has been shown to protect neurons by binding to N-cadherin. Our previous results have shown that electroacupuncture could increase the expression of N-cadherin mRNA in facial neurons and promote facial nerve regeneration. In this study, the potential mechanisms by which electroacupuncture promotes nerve regeneration were elucidated through assessing the effects of electroacupuncture on GDNF and N-cadherin expression in facial motoneurons of rabbits with peripheral facial nerve crush injury. New Zealand rabbits were randomly divided into a normal group(normal control, n = 21), injury group(n = 45) and electroacupuncture group(n = 45). Model rabbits underwent facial nerve crush injury only. Rabbits in the electroacupuncture group received facial nerve injury, and then underwent electroacupuncture at Yifeng(TE17), Jiache(ST6), Sibai(ST2), Dicang(ST4), Yangbai(GB14), Quanliao(SI18), and Hegu(LI4; only acupuncture, no electrical stimulation). The results showed that in behavioral assessments, the total scores of blink reflex, vibrissae movement, and position of apex nasi, were markedly lower in the EA group than those in the injury group. Hematoxylin-eosin staining of the right buccinator muscle of each group showed that the cross-sectional area of buccinator was larger in the electroacupuncture group than in the injury group on days 1, 14 and 21 post-surgery. Toluidine blue staining of the right facial nerve tissue of each group revealed that on day 14 post-surgery, there was less axonal demyelination and fewer inflammatory cells in the electroacupuncture group compared with the injury group. Quantitative real time-polymerase chain reaction showed that compared with the injury group, N-cadherin mRNA levels on days 4, 7, 14 and 21 and GDNF mRNA levels on days 4, 7 and 14 were significantly higher in the electroacupuncture group. Wes 展开更多
关键词 NERVE REGENERATION FACIAL paralysis ELECTROACUPUNCTURE glial cell-derived neurotrophic factor N-cadherin crush injury neuronal apoptosis FACIAL neuron NERVE DEMYELINATION neural REGENERATION
下载PDF
Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies 被引量:23
7
作者 Guihong Li Fengbo Yu +5 位作者 Ting Lei Haijun Gao Peiwen Li Yuxue Sun Haiyan Huang Qingchun Mu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第6期1015-1024,共10页
Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplanta... Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction,angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action,and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke.We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. 展开更多
关键词 neurotrophic understood infarct poorly neurological secretion angiogenesis migration directional intravenous
下载PDF
Ginkgolide B promotes the proliferation and differentiation of neural stem cells following cerebral ischemia/reperfusion injury,both in vivo and in vitro 被引量:22
8
作者 Pei-Dong Zheng Rajneesh Mungur +3 位作者 Heng-Jun Zhou Muhammad Hassan Sheng-Nan Jiang Jie-Sheng Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1204-1211,共8页
Neural stem cells have great potential for the development of novel therapies for nervous system diseases.However,the proliferation of endogenous neural stem cells following brain ischemia is insufficient for central ... Neural stem cells have great potential for the development of novel therapies for nervous system diseases.However,the proliferation of endogenous neural stem cells following brain ischemia is insufficient for central nervous system self-repair.Ginkgolide B has a robust neuroprotective effect.In this study,we investigated the cell and molecular mechanisms underlying the neuroprotective effect of ginkgolide B on focal cerebral ischemia/reperfusion injury in vitro and in vivo.Neural stem cells were treated with 20,40 and 60 mg/L ginkgolide B in vitro.Immunofluorescence staining was used to assess cellular expression of neuron-specific enolase,glial fibrillary acid protein and suppressor of cytokine signaling 2.After treatment with 40 and 60 mg/L ginkgolide B,cells were large,with long processes.Moreover,the proportions of neuron-specific enolase-,glial fibrillary acid protein-and suppressor of cytokine signaling 2-positive cells increased.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.Six hours after ischemia,ginkgolide B(20 mg/kg) was intraperitoneally injected,once a day.Zea Longa's method was used to assess neurological function.Immunohistochemistry was performed to evaluate the proportion of nestin-,neuron-specific enolase-and glial fibrillary acid protein-positive cells.Real-time quantitative polymerase chain reaction was used to measure m RNA expression of brain-derived neurotrophic factor and epidermal growth factor.Western blot assay was used to analyze the expression levels of brain-derived neurotrophic factor and suppressor of cytokine signaling 2.Ginkgolide B decreased the neurological deficit score,increased the proportion of nestin-,neuron-specific enolase-and glial fibrillary acid protein-positive cells,increased the m RNA expression of brain-derived neurotrophic factor and epidermal growth factor,and increased the expression levels of brain-derived neurotrophic factor and suppressor of cytokine signaling 2 in the ischemic penumbra.Together 展开更多
关键词 nerve regeneration brain-derived neurotrophic factor epidermal growth factor suppressor of cytokine signaling 2 neuron-specific enolase glial fibrillary acid protein nestin bromodeoxyuridine neurological function middle cerebral artery occlusion astrocytes neural regeneration
下载PDF
Platelets and depression in cardiovascular disease:A brief review of the current literature 被引量:22
9
作者 Marlene S Williams 《World Journal of Psychiatry》 SCIE 2012年第6期114-123,共10页
Major depression is an independent risk factor for cardiovascular mortality and morbidity. The exact mechanisms linking depression and increased cardiovascular risk remain poorly understood. Several mechanisms have be... Major depression is an independent risk factor for cardiovascular mortality and morbidity. The exact mechanisms linking depression and increased cardiovascular risk remain poorly understood. Several mechanisms have been proposed including increased platelet reactivity. This review focuses on the current literature that examines the platelet hypothesis of depression. To date studies show increased serotonin response, increased platelet serotonin receptor density, decreased serotonin transporter binding, and decreased platelet serotonin levels in individuals with depression. However other studies have shown no change in serotonin uptake. In addition to platelet serotonin specific pathways, other platelet pathways that have shown significant changes in depressed individuals include blunting of the platelet adenosine response, increased platelet thrombin response, increased glycoprotein Ⅰb expression, increased P-selectin, β thromboglobulin, and platelet factor four, as well as decreased platelet brain derived neurotrophic factor. However there are other studies that show conflicting evidence of increased platelet activation as measured by integrin receptor α2b β3. Other conflictingdata include α adrenergic density and platelet response to augmented serotonin. The direction of future research in platelet functional changes in depression and coronary artery disease should continue to focus on serotonin specific pathways with emphasis on potential mechanisms of specific pathway changes. 展开更多
关键词 PLATELETS DEPRESSION Coronary artery disease SEROTONIN Polymorphism Selective SEROTONIN REUPTAKE inhibitor THROMBIN Brain derived neurotrophic factor
下载PDF
首发精神分裂症患者血清MIF、EGF水平与认知功能相关性 被引量:23
10
作者 于玲 曾勇 +5 位作者 赵心灵 李婷 吴杰 张缙韬 王婷婷 熊鹏 《中华行为医学与脑科学杂志》 CAS CSCD 北大核心 2018年第9期793-797,共5页
目的探讨首发精神分裂症患者血清巨噬细胞迁移抑制因子(macrophage migration inhibitory factor,MIF)和表皮生长因子(epidermal growth factor,EGF)浓度变化,及其与临床症状和认知功能之间的关系。方法使用酶联免疫吸附方法(en... 目的探讨首发精神分裂症患者血清巨噬细胞迁移抑制因子(macrophage migration inhibitory factor,MIF)和表皮生长因子(epidermal growth factor,EGF)浓度变化,及其与临床症状和认知功能之间的关系。方法使用酶联免疫吸附方法(enzyme-linked immunosorbent assay,ELISA)检测53例精神分裂症患者和58名正常对照者血清中MIF和EGF的浓度值,采用阳性与阴性症状量表(positive and negative syndrome scale,PANSS)评估患者临床症状,使用认知功能成套测验共识版(MCCB)进行认知功能评估。结果患者组血清MIF浓度高于对照组[(50.54±23.05)μg/L,(36.72±18.52)μg/L,P〈0.01],患者组血清EGF浓度高于对照组[(5163.40±2289.76),(3584.83±1444.71)ng/L,P〈0.01]。患者组血清MIF浓度与PANSS评分呈正相关(P〈0.05)。患者组MCCB检测中TMT评分高于对照组(P〈0.01),BACS SC、HVLT-R、BVMT-R、CF评分低于对照组(P〈0.01),患者组血清MIF浓度与MCCB认知测试中BVMT-R(P〈0.05)呈正相关,血清EGF浓度与BVMT-R呈正相关(P〈0.05)。患者组血清MIF浓度和血清EGF浓度呈正相关(P〈0.05),对照组血清MIF浓度和血清EGF浓度呈正相关(P〈0.05)。结论血清蛋白因子的浓度与首发精神分裂症患者的临床表现及部分认知功能障碍有一定的相关性,存在神经免疫异常和神经营养失衡且二者具有相关性。 展开更多
关键词 精神分裂症 巨噬细胞迁移抑制因子 表皮生长因子 神经免疫 神经营养 认知功能
原文传递
Roles of neural stem cells in the repair of peripheral nerve injury 被引量:20
11
作者 Chong Wang Chang-feng Lu +2 位作者 Jiang Peng Cheng-dong Hu Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期2106-2112,共7页
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article revi... Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways. 展开更多
关键词 nerve regeneration neural stem cells peripheral nerve regeneration Schwann-like cells neurons neurotrophic factors NEUROPROTECTION AXONS ANGIOGENESIS immune regulation neural regeneration
下载PDF
Therapeutic potential of brain-derived neurotrophic factor(BDNF)and a small molecular mimics of BDNF for traumatic brain injury 被引量:20
12
作者 Mary Wurzelmann Jennifer Romeika Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期7-12,共6页
Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the ... Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the damaged neural tissue.Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration.The neurotrophin brain-derived neurotrophic factor(BDNF) has significant effect in both aspects,promoting neuronal survival,synaptic plasticity and neurogenesis.Recently,the flavonoid 7,8-dihydroxyflavone(7,8-DHF),a small Trk B agonist that mimics BDNF function,has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI.Compared to BDNF,7,8-DHF has a longer half-life and much smaller molecular size,capable of penetrating the blood-brain barrier,which makes it possible for non-invasive clinical application.In this review,we summarize functions of the BDNF/Trk B signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI. 展开更多
关键词 7 8-dihydroxyflavone brain-derived neurotrophic factor tropomyosin related kinase B(TrkB) receptor traumatic brain injury neuroregeneration neuroprotection
下载PDF
Jisuikang, a Chinese herbal formula, increases neurotrophic factor expression and promotes the recovery of neurological function after spinal cord injury 被引量:19
13
作者 Yang Guo Yong Ma +3 位作者 Ya-lan Pan Su-yang Zheng Jian-wei Wang Gui-cheng Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1519-1528,共10页
The Chinese medicine compound, ]isuikang, can promote recovery of neurological function by inhibiting lipid peroxidation, scavenging oxygen free radicals, and effectively improving the local microenvironment after spi... The Chinese medicine compound, ]isuikang, can promote recovery of neurological function by inhibiting lipid peroxidation, scavenging oxygen free radicals, and effectively improving the local microenvironment after spinal cord injury. However, the mechanism remains unclear. Thus, we established a rat model of acute spinal cord injury using a modified version of Allen's method. Jisuikang (50, 25, and 12.5 g/kg/d) and prednis- olone were administered 30 minutes after anesthesia. Basso, Beattie, and Bresnahan locomotor scale scores and the oblique board test showed improved motor function recovery in the prednisone group and moderate-dose Jisuikang group compared with the other groups at 3-7 days post-injury. The rats in the moderate-dose Jisuikang group recovered best at 14 days post-injury. Hematoxylin-eosin staining and transmis- sion electron microscopy showed that the survival rate of neurons in treatment groups increased after 3-7 days of administration. Further, the structure of neurons and glial cells was more distinct, especially in prednisolone and moderate-dose Jisuikang groups. Western blot assay and immunohistochemistry showed that expression of brain-derived neurotrophic factor (BDNF) in injured segments was maintained at a high level after 7-14 days of treatment. In contrast, expression of nerve growth factor (NGF) was down-regulated at 7 days after spinal cord injury. Re- al-time fluorescence quantitative polymerase chain reaction showed that expression of BDNF and NGF mRNA was induced in injured segments by prednisolone and Jisuikang. At 3-7 days after injury, the effect of prednisolone was greater, while 14 days after injury, the effect of moder- ate-dose Jisuikang was greater. These results confirm that Jisuikang can upregulate BDNF and NGF expression for a prolonged period after spinal cord injury and promote repair of acute spinal cord injury, with its effect being similar to prednisolone. 展开更多
关键词 nerve regeneration spinal cord injury JISUIKANG Chinese medicine PREDNISOLONE MICROENVIRONMENT axon regeneration secondary changes neuronal apoptosis brain-derived neurotrophic factor nerve growth factor neural regeneration
下载PDF
Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion 被引量:19
14
作者 Bei-Yao Gao Dong-Sheng Xu +6 位作者 Pei-Le Liu Ce Li Liang Du Yan Hua Jian Hu Jia-Yun Hou Yu-Long Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期1045-1057,共13页
Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb.Ho... Modified constraint-induced movement therapy is an effective treatment for neurological and motor impairments in patients with stroke by increasing the use of their affected limb and limiting the contralateral limb.However,the molecular mechanism underlying its efficacy remains unclear.In this study,a middle cerebral artery occlusion(MCAO)rat model was produced by the suture method.Rats received modified constraint-induced movement therapy 1 hour a day for 14 consecutive days,starting from the 7^th day after middle cerebral artery occlusion.Day 1 of treatment lasted for 10 minutes at 2r/min,day 2 for 20 minutes at 2 r/min,and from day 3 onward for 20 minutes at 4 r/min.CatWalk gait analysis,adhesive removal test,and Y-maze test were used to investigate motor function,sensory function as well as cognitive function in rodent animals from the 1st day before MCAO to the 21^st day after MCAO.On the 21^st day after MCAO,the neurotransmitter receptor-related genes from both contralateral and ipsilateral hippocampi were tested by micro-array and then verified by western blot assay.The glutamate related receptor was shown by transmission electron microscopy and the glutamate content was determined by high-performance liquid chromatography.The results of behavior tests showed that modified constraint-induced movement therapy promoted motor and sensory functional recovery in the middle cerebral artery-occluded rats,but had no effect on cognitive function.The modified constraint-induced movement therapy upregulated the expression of glutamate ionotropic receptor AMPA type subunit 3(Gria3)in the hippocampus and downregulated the expression of the beta3-adrenergic receptor gene Adrb3 and arginine vasopressin receptor 1 A,Avprla in the middle cerebral artery-occluded rats.In the ipsilateral hippocampus,only Adra2 a was downregulated,and there was no significant change in Gria3.Transmission electron microscopy revealed a denser distribution the more distribution of postsynaptic glutamate receptor 2/3,which is an a-amino-3-hydrox 展开更多
关键词 BRAIN-DERIVED neurotrophic factor glutamate HIPPOCAMPUS m CIMT middle cerebral artery occlusion MODIFIED constraint-induced movement therapy α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor
下载PDF
Neurotrophic factors and corneal nerve regeneration 被引量:18
15
作者 Marta Sacchetti Alessandro Lambiase 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第8期1220-1224,共5页
The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp... The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp examination. Corneal sensitivity is provided by the ophthalmic branch of the trigeminal nerve that elicits protective reflexes such as blinking and tearing and exerts trophic support by releasing neuromediators and growth factors. Corneal nerves are easily evaluated for both function and morphology using standard instruments such as corneal esthesiometer and in vivo confocal microscope. All local and systemic conditions that are associated with damage of the trigeminal nerve cause the development of neurotrophic keratitis, a rare degenerative disease. Neurotrophic keratitis is characterized by impairment of corneal sensitivity associated with development of persistent epithelial defects that may progress to corneal ulcer, melting and perforation. Current neurotrophic keratitis treatments aim at supporting corneal healing and preventing progression of corneal damage. Novel compounds able to stimulate corneal nerve recovery are in advanced development stage. Among them, nerve growth factor eye drops showed to be safe and effective in stimulating corneal healing and improving corneal sensitivity in patients with neurotrophic keratitis. Neurotrophic keratitis represents an useful model to evaluate in clinical practice novel neuro-regenerative drugs. 展开更多
关键词 neurotrophic keratitis corneal sensitivity nerve regeneration nerve growth factor
下载PDF
Reduced brain-derived neurotrophic factor expression in cortex and hippocampus involved in the learning and memory deficit in molarless SAMP8 mice 被引量:17
16
作者 JIANG Qing-song LIANG Zi-liang +3 位作者 WU Min-Jie FENG Lin LIU Li-li ZHANG Jian-jun 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第10期1540-1544,共5页
Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional... Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional consequences on the brain cortex and hippocampus have not been described in detail. The aim of this study was to find the molecular mechanism related with learning and memory deficit after a bilateral molarless condition having been surgically induced in senescence-accelerated mice/prone8 (SAMP8) mice, which may ultimately provide an experimental basis for clinical prevention of senile dementia.Methods Mice were either sham-operated or subjected to complete molar removal. The animals' body weights were monitored every day. Learning ability and memory were measured in a water maze test at the end of the 1 st, 2nd, and 3rd months after surgery. As soon as significantly prolonged escape latency in the molarless group was detected, the locomotor activity was examined in an open field test. Subsequently, the animals were decapitated and the cortex and hippocampus were dissected for Western blotting to measure the expression levels of brain-derived neurotrophic factor (BDNF) and the tropomyosin related kinase B (TrkB), the high affinity receptor of BDNF.Results Slightly lower weights were consistently observed in the molarless group, but there was no significant difference in weights between the two groups (P〉0.05). Compared with the sham group, the molarless group exhibited lengthened escape latency in the water maze test three months after surgery, whereas no difference in locomotor activity was observed. Meanwhile, in the cortex and hippocampus, BDNF levels were significantly decreased in the molarless group (P〈0.05); but the expression of its receptor, TrkB, was not significantly affected.Conclusion These results suggested that the molarless condition impaired learning and memory abilities in SAMP8mice three months after teeth extraction, and this effect was accompanied by si 展开更多
关键词 molarless learning and memory water maze brain-derived neurotrophic Jactor TRKB
原文传递
Increased expression of brain-derived neurotrophic factor is correlated with visceral hypersensitivity in patients with diarrheapredominant irritable bowel syndrome 被引量:16
17
作者 Yu Zhang Geng Qin +2 位作者 De-Rong Liu Yan Wang Shu-Kun Yao 《World Journal of Gastroenterology》 SCIE CAS 2019年第2期269-281,共13页
BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(... BACKGROUND Visceral hypersensitivity is considered to play a vital role in the pathogenesis of irritable bowel syndrome(IBS). Neurotrophins have drawn much attention in IBS recently. Brain-derived neurotrophic factor(BDNF) was found to mediate visceral hypersensitivity via facilitating sensory nerve growth in pre-clinical studies. We hypothesized that BDNF might play a role in the pathogenesis of diarrhea-predominant IBS(IBS-D).AIM To investigate BDNF levels in IBS-D patients and its role in IBS-D pathophysiology.METHODS Thirty-one IBS-D patients meeting the Rome IV diagnostic criteria and 20 ageand sex-matched healthy controls were recruited. Clinical and psychological assessments were first conducted using standardized questionnaires. Visceral sensitivity to rectal distension was tested using a high-resolution manometry system. Colonoscopic examination was performed and four mucosal pinch biopsies were taken from the rectosigmoid junction. Mucosal BDNF expression and nerve fiber density were analyzed using immunohistochemistry. Mucosal BDNF mRNA levels were quantified by quantitative real-time polymerase chain reaction. Correlations between these parameters were examined.RESULTS The patients had a higher anxiety score [median(interquartile range), 6.0(2.0-10.0) vs 3.0(1.0-4.0), P = 0.003] and visceral sensitivity index score [54.0(44.0-61.0)vs 21.0(17.3-30.0), P < 0.001] than controls. The defecating sensation threshold[60.0(44.0-80.0) vs 80.0(61.0-100.0), P = 0.009], maximum tolerable threshold[103.0(90.0-128.0) vs 182.0(142.5-209.3), P < 0.001] and rectoanal inhibitory reflex threshold [30.0(20.0-30.0) vs 30.0(30.0-47.5), P = 0.032] were significantly lower in IBS-D patients. Intestinal mucosal BDNF protein [3.46 E-2(3.06 E-2-4.44 E-2) vs3.07 E-2(2.91 E-2-3.48 E-2), P = 0.031] and mRNA [1.57(1.31-2.61) vs 1.09(0.74-1.42), P = 0.001] expression and nerve fiber density [4.12 E-2(3.07 E-2-7.46 E-2) vs1.98 E-2(1.21 E-2-4.25 E-2), P = 0.002] were significantly elevated in the patients.Increased BDNF expression was 展开更多
关键词 IRRITABLE bowel syndrome DIARRHEA BRAIN-DERIVED neurotrophic factor VISCERAL HYPERSENSITIVITY Nerve growth
下载PDF
Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord 被引量:16
18
作者 Changwei Song Shiqiang Fang +1 位作者 Gang Lv Xifan Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第15期1383-1389,共7页
Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury ... Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury. 展开更多
关键词 neural regeneration spinal cord injury GASTRODIN brain-derived neurotrophic factor MICROENVIRONMENT traditional Chinese medicine spinal structure animal behavior central nervoussystem injury grants-supported paper NEUROREGENERATION
下载PDF
Combined therapy of methylprednisolone and brain-derived neurotrophic factor promotes axonal regeneration and functional recovery after spinal cord injury in rats 被引量:13
19
作者 李立新 徐启武 +3 位作者 吴幼章 胡卫星 顾培元 傅震 《Chinese Medical Journal》 SCIE CAS CSCD 2003年第3期95-99,共5页
Objective To investigate the effects of combination therapy with methylprednisolone (MP) and brain-derived neurotrophic factor (BDNF) on axonal remyelination and functional recovery after spinal cord injury in rats. M... Objective To investigate the effects of combination therapy with methylprednisolone (MP) and brain-derived neurotrophic factor (BDNF) on axonal remyelination and functional recovery after spinal cord injury in rats. Methods Forty-five rats were randomly divided into three groups: Group A received MP and BDNF; group B received MP and cerebrospinal fluid (CSF); and group C received CSF only. Contusion injury to adult rat spinal cord was produced at the T10 vertebra level followed by immediate intravenous MP or CSF, and was thereafter infused intrathecally with BDNF or CSF for 6 weeks. Axonal remyelination and functional recovery was observed using RT-PCR, immunohistochemistry and open field locomotion. Results An increase of 28.4%±2.3% in the expression of proteolipid protein (PLP) gene, an endogenous indicator of axonal remyelination, was demonstrated in group A 24 hours after injury. Ten weeks later, there were significant decreases in hematogenous inflammatory cellular infiltration in groups A and B compared to C (P<0.05). Concomitantly, a significant amount of axonal remyelination was observed in group A compared to groups B and C (P<0.05). Furthermore, combination therapy using MP and BDNF in group A resulted in stimulation of hindlimb activity as well as improvement in the rate of functional recovery in open field locomotion (P<0.05). Conclusions Combined therapy of MP and BDNF can improve functional recovery through mechanisms that include attenuating inflammatory cellular infiltration and enhancing axonal remyelination at the injury site. Such a combination may be an effective approach for treatment of spinal cord injury. 展开更多
关键词 spinal cord injuries METHYLPREDNISOLONE brain-derived neurotrophic factor
原文传递
Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro 被引量:14
20
作者 Chang-Xiang Li Xue-Qian Wang +3 位作者 Fa-Feng Cheng Xin Yan Juan Luo Qing-Guo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1941-1949,共9页
Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin an... Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression o 展开更多
关键词 hyodeoxycholic acid oxygen glucose deprivation and REOXYGENATION blood-brain barrier permeability anti-oxidative anti-inflammatory ANTI-APOPTOTIC BRAIN-DERIVED neurotrophic FACTOR glial cell line-derived neurotrophic FACTOR ischemic stroke in vitro NEUROVASCULAR unit
下载PDF
上一页 1 2 248 下一页 到第
使用帮助 返回顶部